Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing Process
2.3. Methods
3. Results and Discussion
3.1. Results for Apparent Density Tests
3.2. Results of Acoustic Tests
3.2.1. The Effect of Material Thickness on the Sound Absorption Coefficient
3.2.2. The Influence of Wool Compression on the Sound Absorption Coefficient
3.2.3. The Influence of the Presence of Water on the Sound Absorption Coefficient
3.2.4. Influence of Cold/Hot Compression on the Sound Absorption Coefficient
3.2.5. Comparisons with Other Materials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Del Rey, R.; Uris, A.; Alba, J.; Candelas, P. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 2017, 10, 1277. [Google Scholar] [CrossRef] [Green Version]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, B.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Pradeep, E.; Kannaian, T.; Sasikala, L. Development of natural fiber nonwovens for application as car interiors for noise control. J. Ind. Text. 2010, 39, 267–278. [Google Scholar] [CrossRef]
- Asim, M.; Khalina Abdan, M.; Jawaid, M. A review on pineapple leaves fiber and its composites. Int. J. Polym. Sci. 2015, 950567. [Google Scholar] [CrossRef] [Green Version]
- Belakroum, R.; Gherfi, A.; Kadja, M.; Maalouf, C.; Lachi, M. Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr. Build. Mater. 2018, 184, 330–343. [Google Scholar] [CrossRef]
- Berardi, U.; Gino, I. Acoustic characterization of natural fibers for sound absorption. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Elammaran, J.; Hamdan, S.; Ezhumalai, P. Investigation on dielectric and sound absorption properties of banana fibers reinforced epoxy composites. J. Teknol. 2016, 78, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Hamzé, K.; Maalouf, C.; Bliard, C.; Moussa, T.; El Wakil, N. Hygrothermal and acoustical performance of starch-beet pulp composites for building thermal insulation. Materials 2018, 11, 1622. [Google Scholar] [CrossRef] [Green Version]
- Lim, Z.Y.; Putra, A.; Nor, M.J.M.; Yaakob, M.Y. Sound absorption performance of natural kenaf fibers. Appl. Acoust. 2018, 130, 107–114. [Google Scholar] [CrossRef]
- Yian, Z.; Wang, J.; Zhu, Y.; Wang, A. Research and application of kapok fiber as an absorbing material: A mini review. J. Environ. Sci. 2015, 27, 21–32. [Google Scholar] [CrossRef]
- Gagan, B.; Singh, V.K.; Gope, P.C.; Gupta, T. Application and properties of chicken feather fiber (CFF) a livestock waste in composite material development. J. Graph. Era Univ. 2017, 5, 16–24. [Google Scholar]
- João, B.; Souza, J.; Lopes, J.B.; Sampaio, J. Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Eng. 2017, 200, 472–479. [Google Scholar] [CrossRef]
- Berardi, U.; Gino, I.; Di Gabriele, M. Characterization of sheep wool panels for room acoustic applications. In Proceedings of the Meetings on Acoustics 22ICA, Buenos Aires, Argentina, 5–9 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Dunne, R.; Desai, D.; Sadiku, R.; Jayaramudu, J. A review of natural fibres, their sustainability and automotive applications. J. Reinf. Plast. Compos. 2016, 35, 1041. [Google Scholar] [CrossRef]
- Sen, T.; Reddy, H.N.J. Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int. J. Innov. Manag. Technol. 2011, 2, 192. [Google Scholar]
- Spritzendorfer, J. Der Dämmstoff Schafwolle, Energetische Bewertung-CO2 Bilanz und Ökobilanz Beratungsagentur für zukunftsfähiges Bauen, Energies; Presse—EGGBI Publikationen: Basel, Schweiz, 2015. [Google Scholar]
- Korjenic, A.; Klarić, S.; Hadžić, A.; Korjenic, S. Sheep wool as a construction material for energy efficiency improvement. Energies 2015, 8, 5765–5781. [Google Scholar] [CrossRef] [Green Version]
- Dunne, R.; Desai, D.; Sadiku, R. A Review of the Factors that Influence Sound Absorption and the Available Empirical Models for Fibrous Materials. Acoust Aust. 2017, 45, 45. [Google Scholar] [CrossRef]
- Asdrubali, F. Survey on the acoustical properties of new sustainable materials for noise control. In Proceedings of the Euronoise 2006, Tampere, Finland, 27–31 May 2006. [Google Scholar]
- Zach, J.; Korjenic, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Asis, P.; Mvubu, M.; Muniyasamy, M.; Botha, A.; Anandjiwala, R.D. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energ. Build. 2015, 92, 161–169. [Google Scholar] [CrossRef]
- Pennacchio, R.; Savio, L.; Bosia, D.; Thiebat, F.; Piccablotto, G.; Patrucco, A. Fitness: Sheep-wool and hemp sustainable insulation panels. Energy. Proc. 2017, 111, 287–297. [Google Scholar] [CrossRef]
- Del Rey, R.; Alba, J.; Ramis, J.; Sanchis, V. New absorbent acoustics materials from plastic bottle remnants. Mater. Constr. 2011, 61, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Ramis, J.; Alba, J.; Del Rey, R.; Escuder, E.; Sanchís, V. New absorbent material acoustic based on kenaf’s fiber. Mater. Constr. 2010, 60, 133–143. [Google Scholar] [CrossRef]
- Baxter, B.P.; Cottle, D.J. Fiber diameter distribution characteristics of midside (fleece) samples and their use in sheep breeding. Wool Technol. Sheep Breed. 1998, 46, 154–171. [Google Scholar]
- Hassan, M.M.; Carr, C.M. A review of the sustainable methods in imparting shrink resistance to wool fabrics. J. Adv. Res. 2019, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Simpson, W.S.; Crawshaw, G.H. Wool: Science and Technology; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Ibrahim, M.A.; Melik, R.W. Physical parameters affecting acoustic absorption characteristics of fibrous materials. Proc. Math. Phys. Soc. Egypt 1978, 46, 125–130. [Google Scholar]
- Gombos, A.M.; Nemes, O.; Soporan, V.F.; Vescan, A. Toward New Composite Materials Starting from Multi-Layer Wastes. STUD U BABES-BOL CHE 2008, LIII, 81. [Google Scholar]
- Millington, K.R.; Rippon, J.A. Wool as a high-performance fiber. In Structure and Properties of High-Performance Fibers; Woodhead Publishing: Cambridge, UK, 2017; p. 367. [Google Scholar]
- Cellular Plastics and Rubbers—Determination of Apparent Density; Standard ISO 845:2006; ISO: Geneva, Switzerland, 2006.
- Determination of Sound Absorption Coefficient and Acoustic Impedance with the Interferometer; Standard SR EN ISO 10534-2; Part 2. Transfer Function Method; ISO: Geneva, Switzerland, 2002.
- Tiuc, A.E.; Vasile, O.; Vermesan, H.; Nemes, O.; Borlea Muresan, S.I. New Multilayered Composite for Sound Absorbing Applications. Rom. J. Acoust. Vib. 2018, 15, 115. [Google Scholar]
- Koizumi, T.; Tsujiuchi, N.; Adachi, A. The Development of Sound Absorbing Materials Using Natural Bamboo Fibers, High Performance; WIT Press: Southampton, UK, 2002. [Google Scholar]
- Tiuc, A.E.; Nemeş, O.; Vermeşan, H.; Toma, A.C. New sound absorbent composite materials based on sawdust and polyurethane foam. Compos. Part B Eng. 2019, 165, 120–130. [Google Scholar] [CrossRef]
- Jimenez-Espadafor, F.J.; Villanueva, J.A.B.; Garcia, M.T.; Trujillo, E.C.; Blanco, A.M. Optimal design of acoustic material from tire fluff. Mater. Des. 2011, 32, 3608–3616. [Google Scholar] [CrossRef]
- Kalauni, K.; Pawar, S.J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J. Porous Mater. 2019, 26, 1795. [Google Scholar] [CrossRef]
- Ersoy, S.; Küçük, H. Investigation of industrial tea-leaf-fiber waste material for its sound absorption properties. Appl. Acoust. 2009, 70, 215–220. [Google Scholar] [CrossRef]
- Abdullah, A. Ecological and Economic Attributes of Jute and Natural Fiber for Sustainable Eco-Management; Primeasia University: Dhaka, Bangladesh, 2014. [Google Scholar]
- Tiuc, A.E.; Vasile, O.; Vermesan, H. The analysis of factors that influence the sound absorption coefficient of porous materials. RJAV 2014, 11, 105. [Google Scholar]
- Asdrubali, F.; D’Alessandro, F.D.; Schiavoni, S. Sound absorbing properties of materials made of rubber crumbs. J. Acoust. Soc. Am. 2008, 35–40. [Google Scholar] [CrossRef]
- Nick, A.; Becker, U.; Thoma, W. Improved acoustic behavior of interior parts of renewable resources in the automotive industry. J. Polym. Environ. 2002, 10, 115. [Google Scholar] [CrossRef]
- Coates, M.; Kierzkowski, M. Acoustic textiles—lighter, thinner and more absorbent. Tech. Text. Int. 2002, 11, 15. [Google Scholar]
- Castagnede, B.; Aknine, A.; Brouard, B. Effects of compression on the sound absorption of fibrous materials. Appl. Acoust. 2000, 61, 173. [Google Scholar] [CrossRef]
- Fouladi, M.H.; Nor, M.J.M.; Ayub, M.D. Enhancement of coir fiber normal incidence sound absorption coefficient. J. Comput. Acoust. 2012, 20, 1250003. [Google Scholar] [CrossRef] [Green Version]
- Nor, M.J.M.; Ayub, M.; Zulkifli, R. Effect of compression on the acoustic absorption of coir fiber. Am. J. Appl. Sci. 2010, 7, 1285. [Google Scholar] [CrossRef] [Green Version]
- Delany, M.E.; Bazley, E.N. Acoustic properties of fibrous absorbent material. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
Group | Code | Initial Height (mm) | Final Height (mm) | Temperature (°C) | Pressure (MPa) | Water (ml) |
---|---|---|---|---|---|---|
A | WHW40_3_25 | 40 | 1 | 60 | 3 | 25 |
WHW80_6_50 | 80 | 2.5 | 70 | 6 | 50 | |
WHW80_6_75 | 80 | 3 | 80 | 6 | 75 | |
B | WH120_4 | 120 | 15 | 80 | 4 | - |
WH240_4 | 240 | 25 | 80 | 4 | - | |
WH120_0.05 | 124 | 35 | 80 | 0.05 | - | |
WH240_0.05 | 240 | 50 | 80 | 0.05 | - | |
C | WC40 | 40 | 25 | 25 | 0.003 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borlea, S.I.; Tiuc, A.-E.; Nemeş, O.; Vermeşan, H.; Vasile, O. Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties. Materials 2020, 13, 694. https://doi.org/10.3390/ma13030694
Borlea SI, Tiuc A-E, Nemeş O, Vermeşan H, Vasile O. Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties. Materials. 2020; 13(3):694. https://doi.org/10.3390/ma13030694
Chicago/Turabian StyleBorlea (Mureşan), Simona Ioana, Ancuţa-Elena Tiuc, Ovidiu Nemeş, Horaţiu Vermeşan, and Ovidiu Vasile. 2020. "Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties" Materials 13, no. 3: 694. https://doi.org/10.3390/ma13030694
APA StyleBorlea, S. I., Tiuc, A. -E., Nemeş, O., Vermeşan, H., & Vasile, O. (2020). Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties. Materials, 13(3), 694. https://doi.org/10.3390/ma13030694