Contacts for Molybdenum Disulfide: Interface Chemistry and Thermal Stability
Abstract
:1. Introduction
2. Transition Metal Dichalcogenides
3. Contacts for Nanoelectronics
4. Interface Chemistry
5. The Impact of Processing Conditions on Interface chemistry
5.1. Deposition Ambient
5.2. Engineering the Interface
5.3. Thermal Stability
6. Conclusions
Conflicts of Interest
References
- Wilson, J.A.; Yoffe, A.D. Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Tributsch, H.; Bennett, J. Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. Interf. Electrochem. 1977, 81, 97–111. [Google Scholar] [CrossRef]
- Kautek, W.; Gerischer, H. Photoelectrochemical Reactions and Formation of Inversion Layers at n-Type MoS2-, MoSe2-, and WSe2-Electrodes in Aprotic Solvents. Berichte der Bunsengesellschaft für physikalische Chemie 1980, 84, 645–653. [Google Scholar] [CrossRef]
- Kautek, W.; Gerischer, H.; Tributsch, H. The role of carrier diffusion and indirect optical transitions in the photoelectrochemical behavior of layer type d-band semiconductors. J. Electrochem. Soc. 1980, 127, 2471–2478. [Google Scholar] [CrossRef]
- Fortin, E.; Sears, W. Photovoltaic effect and optical absorption in MoS2. J. Phys. Chem. Solid 1982, 43, 881–884. [Google Scholar] [CrossRef]
- Boehm, H.; Clauss, A.; Fischer, G.; Hofmann, U. Dünnste kohlenstoff-folien. Zeitschrift Für Naturforschung B 1962, 17, 150–153. [Google Scholar] [CrossRef]
- Joensen, P.; Frindt, R.; Morrison, S.R. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457–461. [Google Scholar] [CrossRef]
- Novoselov, K.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Jiang, L.; Marconcini, P.; Hossian, M.S.; Qiu, W.; Evans, R.; Macucci, M.; Skafidas, E. A tight binding and [... formula...] study of monolayer stanene. Sci. Rep. 2017, 7, 12069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.J.; Wallace, R.M. UV-Ozone Functionalization of 2D Materials. JOM 2019, 71, 224–237. [Google Scholar] [CrossRef] [Green Version]
- McGovern, I.T.; Dietz, E.; Rotermund, H.H.; Bradshaw, A.M.; Braun, W.; Radlik, W.; McGilp, J.F. Soft X-ray photoemission spectroscopy of metal-molybdenum bisulphide interfaces. Surf. Sci. 1985, 152, 1203–1212. [Google Scholar] [CrossRef]
- Wu, R.J.; Udyavara, S.; Ma, R.; Wang, Y.; Chhowalla, M.; Koester, S.J.; Neurock, M.; Mkhoyan, K.A. An Inside Look at the Ti-MoS2 Contact in Ultra-thin Field Effect Transistor with Atomic Resolution. arXiv preprint 2018, arXiv:1807.01377. [Google Scholar]
- McDonnell, S.; Smyth, C.; Hinkle, C.L.; Wallace, R.M. MoS2–Titanium Contact Interface Reactions. ACS Appl. Mater. Interf. 2016, 8, 8289–8294. [Google Scholar] [CrossRef]
- English, C.D.; Shine, G.; Dorgan, V.E.; Saraswat, K.C.; Pop, E. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 2016, 16, 3824–3830. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Chen, H.-Y.; Penumatcha, A.V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 2013, 13, 100–105. [Google Scholar] [CrossRef]
- Kamaratos, M.; Papageorgopoulos, C. A study of the behavior of Fe and Ni on MoS2. Solid State Comm. 1984, 49, 715–718. [Google Scholar] [CrossRef]
- Papageorgopoulos, C.; Kamaratos, M. Adsorption studies of Ni on MoS2 and O2 on Ni-covered MoS2. Surf. Sci. 1985, 164, 353–366. [Google Scholar] [CrossRef]
- McDonnell, S.; Addou, R.; Buie, C.; Wallace, R.M.; Hinkle, C.L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880–2888. [Google Scholar] [CrossRef] [PubMed]
- Smyth, C.M.; Addou, R.; McDonnell, S.; Hinkle, C.L.; Wallace, R.M. Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2-Based Device Performance. J. Phys. Chem. C 2016, 120, 14719–14729. [Google Scholar] [CrossRef]
- Kaushik, N.; Nipane, A.; Basheer, F.; Dubey, S.; Grover, S.; Deshmukh, M.M.; Lodha, S. Schottky barrier heights for Au and Pd contacts to MoS2. Appl. Phys. Lett. 2014, 105, 113505. [Google Scholar] [CrossRef]
- Durbin, T.D.; Lince, J.R.; Didziulis, S.V.; Shuh, D.K.; Yarmoff, J.A. Soft X-ray photoelectron spectroscopy study of the interaction of Cr with MoS2(0001). Surf. Sci. 1994, 302, 314–328. [Google Scholar] [CrossRef]
- Durbin, T.D.; Lince, J.R.; Yarmoff, J.A. Chemical interaction of thin Cr films with the MoS2(0001) surface studied by x-ray photoelectron spectroscopy and scanning Auger microscopy. J. Vac. Sci. Technol. A 1992, 10, 2529–2534. [Google Scholar] [CrossRef]
- Lince, J.R.; Carré, D.J.; Fleischauer, P.D. Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning: The metal-MoS2 interface. Phys. Rev. B 1987, 36, 1647–1656. [Google Scholar] [CrossRef]
- Lince, J.R.; Stewart, T.B.; Fleischauer, P.D.; Yarmoff, J.A.; Taleb-Ibrahimi, A. The chemical interaction of Mn with the MoS2(0001) surface studied by high-resolution photoelectron spectroscopy. J. Vac. Sci. Technol. A 1989, 7, 2469–2474. [Google Scholar] [CrossRef]
- Lince, J.R.; Stewart, T.B.; Hills, M.M.; Fleischauer, P.D.; Yarmoff, J.A.; Taleb-Ibrahimi, A. Photoelectron spectroscopic study of the interaction of thin Fe films with the MoS2(0001) surface. Surf. Sci. 1989, 223, 65–81. [Google Scholar] [CrossRef]
- Kamaratos, M.; Papageorgopoulos, C. Intercalation of MoS2(0001) with Fe, Ni and Pd. Solid State Comm. 1987, 61, 567–569. [Google Scholar] [CrossRef]
- Dong, H.; Gong, C.; Addou, R.; McDonnell, S.; Azcatl, A.; Qin, X.; Wang, W.; Wang, W.; Hinkle, C.L.; Wallace, R.M. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy. ACS Appl. Mater. Interf. 2017, 9, 38977–38983. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, Y.; Arai, K.; Iwabuchi, T. Contact-induced doping in aluminum-contacted molybdenum disulfide. Jap. J. Appl. Phys. 2017, 57, 015801. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Liu, W.; Banerjee, K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 2014, 104, 093106. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.; Mohney, S.E. Annealed Ag contacts to MoS2 field-effect transistors. J. Appl. Phys. 2017, 122, 115306. [Google Scholar] [CrossRef]
- Yuan, H.; Cheng, G.; You, L.; Li, H.; Zhu, H.; Li, W.; Kopanski, J.J.; Obeng, Y.S.; Hight Walker, A.R.; Gundlach, D.J.; et al. Influence of Metal–MoS2 Interface on MoS2 Transistor Performance: Comparison of Ag and Ti Contacts. ACS Appl. Mater. Interf. 2015, 7, 1180–1187. [Google Scholar] [CrossRef]
- Souder, A.; Brodie, D. Electrical contacts and conductivity of MoS2 layer structures. Can. J. Phys. 1971, 49, 2565–2571. [Google Scholar] [CrossRef]
- Li, S.Y.; Rodriguez, J.A.; Hrbek, J.; Huang, H.H.; Xu, G.Q. Chemical and electronic properties of silver atoms supported on sulfur and molybdenum sulfide surfaces. Surf. Sci. 1998, 395, 216–228. [Google Scholar] [CrossRef]
- Cheon, G.; Duerloo, K.-A.N.; Sendek, A.D.; Porter, C.; Chen, Y.; Reed, E.J. Data mining for new two-and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 2017, 17, 1915–1923. [Google Scholar] [CrossRef]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Hai, X.; Pang, H.; Zhang, H.; Shi, L.; Liu, G.; Liu, H.; Zhao, G.; Li, M.; Ye, J. Targeted Synthesis of 2H-and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution. Adv. Mater. 2016, 28, 10033–10041. [Google Scholar] [CrossRef] [PubMed]
- Kappera, R.; Voiry, D.; Yalcin, S.E.; Branch, B.; Gupta, G.; Mohite, A.D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Toh, R.J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Comm. 2017, 53, 3054–3057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, S.J.; Wallace, R.M. Atomically-Thin Layered Films for Device Applications based upon 2D TMDC Materials. Thin Solid Films 2016, 616, 482–501. [Google Scholar] [CrossRef]
- Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y.; Li, X.; Borys, N.J.; Yuan, H.; Fullerton-Shirey, S.K.; et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001. [Google Scholar] [CrossRef]
- Kaul, A.B. Two-dimensional layered materials: Structure, properties, and prospects for device applications. J. Mater. Res. 2014, 29, 348–361. [Google Scholar] [CrossRef] [Green Version]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef] [Green Version]
- Bernal, M.M.; Milano, D. Two-dimensional nanomaterials via liquid-phase exfoliation: synthesis, properties and applications. In Carbon Nanotechnology; Milne, W.I., Cole, M., Eds.; One Central Press (OCP): Cheshire, UK, 2014; pp. 159–185. [Google Scholar]
- Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Yu, S.-H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.A.; Hinkle, C.L. van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 2017, 9, 504–515. [Google Scholar] [CrossRef]
- Du, Y.; Yang, L.; Liu, H.; Ye, P.D. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Mater. 2014, 2, 092510. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Streetman, B.G.; Banerjee, S. Solid State Electronic Devices; Pearson Education Limited: London, UK, 2015. [Google Scholar]
- Chuang, H.-J.; Chamlagain, B.; Koehler, M.; Perera, M.M.; Yan, J.; Mandrus, D.; Tománek, D.; Zhou, Z. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902. [Google Scholar] [CrossRef] [Green Version]
- Suh, J.; Park, T.-E.; Lin, D.-Y.; Fu, D.; Park, J.; Jung, H.J.; Chen, Y.; Ko, C.; Jang, C.; Sun, Y.; et al. Doping against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution. Nano Lett. 2014, 14, 6976–6982. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.X.; Quhe, R.; Zhong, H.; Cong, L.; Ye, M.; Ni, Z.; Song, Z.; Yang, J.; Shi, J.; et al. Does p-type ohmic contact exist in WSe2–metal interfaces? Nanoscale 2016, 8, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Moon, I.; Lee, D.; Choi, M.S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W.J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017, 11, 1588–1596. [Google Scholar] [CrossRef]
- Kang, J.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. X 2014, 4, 031005. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Colombo, L.; Wallace, R.M.; Cho, K. The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS2 Interfaces. Nano Lett. 2014, 14, 1714–1720. [Google Scholar] [CrossRef]
- Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Deppe, T.; Boyd, A.K.; Rinzan, M.; Liu, A.Y.; Paranjape, M.; Barbara, P. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 2013, 3, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heine, V. Theory of Surface States. Phys. Rev. 1965, 138, A1689–A1696. [Google Scholar] [CrossRef]
- Hasegawa, H.; Sawada, T. On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states. Thin Solid Films 1983, 103, 119–140. [Google Scholar] [CrossRef]
- Smyth, C.M.; Addou, R.; McDonnell, S.; Hinkle, C.L.; Wallace, R.M. WSe2-contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions. 2D Mater. 2017, 4, 025084. [Google Scholar] [CrossRef]
- McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R.M. Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments. ACS Nano 2014, 8, 6265–6272. [Google Scholar] [CrossRef]
- Freedy, K.; Zhang, H.; Bendersky, L.; Davydon, A.; McDonnell, S. Thermal Stability of Titanium Contacts to MoS2. ACS Appl. Mater. Interf. 2019, 11, 35389–35393. [Google Scholar] [CrossRef]
- Domask, A.; Gurunathan, R.; Mohney, S. Transition Metal–MoS2 Reactions: Review and Thermodynamic Predictions. J. Electron. Mater. 2015, 44, 4065–4079. [Google Scholar] [CrossRef] [Green Version]
- Mcgovern, I.T.; Mcgilp, J.F.; Hughes, G.J.; Mckinley, A.; Williams, R.H.; Norman, D. Soft-X-Ray Photoemission Spectroscopy of Chemical-Reactivity at Metal-Gase Interfaces. Vacuum 1983, 33, 607–612. [Google Scholar] [CrossRef]
- Brillson, L. Chemical reactions and local charge redistribution at metal-CdS and CdSe interfaces. Phys. Rev. B 1978, 18, 2431. [Google Scholar] [CrossRef]
- Freedy, K.M.; Giri, A.; Foley, B.M.; Barone, M.R.; Hopkins, P.E.; McDonnell, S. Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport. Nanotechnology 2017, 29, 145201. [Google Scholar] [CrossRef] [Green Version]
- Kurtin, S.; McGill, T.; Mead, C. Fundamental transition in the electronic nature of solids. Phys. Rev. Lett. 1969, 22, 1433. [Google Scholar] [CrossRef] [Green Version]
- Smyth, C.M.; Walsh, L.A.; Bolshakov, P.; Catalano, M.; Addou, R.; Wang, L.; Kim, J.; Kim, M.J.; Young, C.D.; Hinkle, C.L.; et al. Engineering the Palladium–WSe2 Interface Chemistry for Field Effect Transistors with High-Performance Hole Contacts. ACS Appl. Nano Mater. 2019, 2, 75–88. [Google Scholar] [CrossRef]
- Park, W.; Kim, Y.; Sang Kyung, L.; Jung, U.; Jin Ho, Y.; Cho, C.; Yun Ji, K.; Sung Kwan, L.; In Seol, H.; Lee, H.; et al. Contact resistance reduction using Fermi level de-pinning layer for MoS2 FETs. In Proceedings of the 2014 IEEE International Electron Devices Meeting, 15–17 December 2014; pp. 5.1.1.–5.1.4. [Google Scholar]
- Park, W.; Min, J.W.; Shaikh, S.F.; Hussain, M.M. Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact. Phys. Status Solid. A 2017, 214. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-S.; Kim, S.-H.; Park, J.; Han, K.H.; Kim, J.; Yu, H.-Y. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States. ACS Nano 2018, 12, 6292–6300. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.; Karmakar, D.; Nipane, A.; Karande, S.; Lodha, S. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. ACS Appl. Mater. Interf. 2016, 8, 256–263. [Google Scholar] [CrossRef]
- Freedy, K.M.; Olson, D.H.; Hopkins, P.E.; McDonnell, S.J. Titanium Contacts to MoS2 with Interfacial Oxide: Interface Chemistry and Thermal Transport. Phys. Rev. Mater. 2019, 3, 104001. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Lee, J.; Lee, J.; Woo, H.; Kim, J.; Jo, Y.; Cho, S.; Kim, H.; Kim, H.; Pawar, S.M.; et al. Electrical properties of N2- and H2 -annealed bulk MoS2/metal junctions. J. Korea Phys. Soc. 2015, 67, 1228–1231. [Google Scholar] [CrossRef]
- Baugher, B.W.H.; Churchill, H.O.H.; Yang, Y.; Jarillo-Herrero, P. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 4212–4216. [Google Scholar] [CrossRef]
- Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors. Nano Lett. 2013, 13, 1983–1990. [Google Scholar] [CrossRef]
- Freedy, K. Interface Studies of Metal/2D Material Contacts. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2019. [Google Scholar]
Ref. | Deposition | Annealing | Characterization | Key Result | |
---|---|---|---|---|---|
Ti | [16] | UHV | None | XPS | Reaction of Ti+MoS2 →Ti–S + Mo0 at room temperature |
[17] | UHV | None | TEM, EELS | Reaction of Ti+MoS2 →Ti–S + Mo0 at room temperature | |
[18] | HV and UHV | None | XPS | Reaction occurs in UHV only and not in HV deposition | |
[19] | UHV | In total, 300 °C for 2 h in HV | TLM | High RC (~7–9 kΩ µm) | |
[20] | Unreported | None | FET I-V Curves | EF pinned near MoS2 conduction band (Φ=0.050 eV) | |
Ni | [21,22] [22] | UHV | Heated sequentially in UHV to 927 °C; time not specified | Auger electron spectroscopy (AES) | - No interactions below 327 °C - Some diffusion of Ni into MoS2 at 327–527 °C - Agglomeration of Ni film > 527 °C |
[19] | HV | In total, 300 °C for 2 h in HV | TLM | RC ~ 4–7 kΩ µm | |
[20] | Unreported | None | FET I-V Curves | n-type Fermi-level pinning (Φ = 0.150 eV) | |
Au | [23] | UHV | None | XPS | No chemical bonding |
[24] | HV and UHV | None | XPS | No chemical bonding | |
[19] | HV and UHV | In total, 300 °C for 2 h in HV | TLM FET- IV curves | - RC for Au ~0.7–2 kΩ µm in UHV; ~3.5–5 kΩ µm in HV - Φ = 0.15 eV | |
[25] | Unreported | Unreported | TLM FET I-V Curves | - RC ~ 30–45 Ω mm - Φ = 0.12 eV | |
Cr | [26,27] | UHV | Heated sequentially in UHV from 425–850 °C, Time not specified | XPS | - Reaction of Cr+MoS2 →Cr-S + Mo0 at room temperature - Reaction driven to completion < 425 °C - Increase in S composition at the Cr surface with temp. - Coalescence of Cr > 650 °C |
[24] | HV and UHV | None | XPS | - Reaction occurs under both HV and UHV conditions - Both depositions result in Mo0 and CrxSy - HV deposition conductions also result in CrxOy | |
Mn | [28] | HV | None | XPS | Chemical reaction observed |
[29] | HV and UHV | Heated sequentially in UHV from 497 to 857 °C, time not specified | XPS | - Reaction of Mn+MoS2 →Mn-S + Mo0 as deposited - Reaction driven to completion above 497 °C - Increase in S composition at the Mn surface with temp. - Coalescence of Mn > 767 °C | |
Fe | [30] | UHV | Heated sequentially in UHV from 327 to 927 °C, time not specified | XPS | - No evidence of reaction in the bulk - Fe-S surface states and S-vacancy states are observed following initial deposition - Heating eliminates these chemical states |
[31] | UHV | UHV at 927 °C for a few minutes; repeated 20 times | AES with Ar+ depth profiling | - Intercalation of Fe between MoS2 layers due to annealing - Potential formation of FeMo2S4 | |
Pd | [28] | HV | None | XPS | No chemical bonding |
[23] | UHV | None | XPS | No chemical bonding | |
[32] | UHV | None | XPS | - No chemical bonding - Perturbation of the MoS2 surface due to Pd overlayer - Pd aligns midgap with MoS2 (Φ = 0.67 eV) | |
[25] | Unreported | Unreported | TLM FET I-V Curves | - RC ~ 75–200 kΩ mm - Φ = 0.4 eV | |
[31] | UHV | UHV at 927 °C for a few minutes; repeated 20 times | AES with Ar+ depth profiling | -Diffusion of Pd into MoS2 layers due to annealing; uniformly distributed in the bulk unlike Fe | |
Al | [28] | HV | None | XPS | No chemical bonding |
[16] | UHV | None | XPS | No chemical bonding | |
[33] | Unreported | In total, 110 °C for 15 h in HV | FET I-V Curves | Significant electron doping manifested in no OFF state | |
In | [28] | HV | None | XPS | No chemical bonding |
Mg | [16] | UHV | None | XPS | Evidence of chemical bonding |
Mo | [34] | Unreported | In total, 146 °C for 2 h | FET I-V Curves | - RC ~ 2 kΩ μm |
Ag | [35] | HV | In total, 150 °C for 24 h in HV followed by RTA in Ar at 200–500 °C | TLM FET I-V Curves | - Negligible reduction in RC after 24 h HV anneal at 150 °C - RC reduced from ~2 kΩ μm to 0.2–0.7 kΩ μm after annealing in RTA at 200–500 °C - Reduction in RC is attributed to diffusion of Ag resulting in doping |
[36] | Unreported | None | FET I-V Curves | - 60x larger ON current than Ti contacted devices | |
[37] | Unreported | In total, 400–600 °C for 5 min | Radioactive tracer | Diffusion of Ag into MoS2 crystal results in intercalation between layers; no diffusion detected in-plane | |
[38] | UHV | In total, −173 to 577 °C in UHV, time not specified | XPS and AES | - No reaction from −173 to 27 °C - Diffusion of Ag into bulk after annealing to 326 °C; negative binding energy shift due to silver→sulfide charge transfer - Heating above 526 °C restored binding energies to pre-anneal positions likely due to the diffusion of Ag into MoSx or the formation of AgMoSx. - Ag clusters form on surface after annealing to 577 °C | |
Sc | [20] | Unreported | None | FET I-V Curves | EF pinned near MoS2 conduction band (Φ = 0.030 eV) |
[24] | HV and UHV | None | XPS | - Reaction occurs under both HV and UHV conditions - HV deposition results in MoOx, MoOxSy, and ScxOy - UHV deposition results in Mo0 and ScSx and | |
Pt | [20] | Unreported | None | FET I-V Curves | n-type Fermi-level pinning (Φ = 0.230 eV) |
Ir | [24] | HV and UHV | None | XPS | - Reaction occurs under both HV and UHV conditions - Both depositions result in MoSx and IrSx - HV deposition also results in IrOx |
Ref | Property | Ref | Property | Suggested Explanation | |
---|---|---|---|---|---|
Metal induced doping in MoS2 | [25] | n-type Pd-MoS2 interface | [64] | p-type Pd-MoS2 interface | MoS2 variability, since Au on MoS2 can exhibit both n-type and p-type contact behavior. [23] |
Trends in metal-MoS2 Schottky barriers and contact resistance | [20] | Schottky barrier for Ti-MoS2 lower than for Ni-MoS2 | [19] | Contact resistance for Ni-MoS2 lower than for Ti-MoS2 | Ti used by Das et al. [20] was likely oxidized during high vacuum deposition. Ti used by English et al. [19] likely resulted in Ti-MoS2 interactions during ultra-high vacuum deposition [18] |
Fermi-level pinning at the metal-MoS2 interface | [23] | Metal-MoS2 interface is unpinned based on photoemission | [20] | Devices clearly behave as if the Fermi-level is pinned | Not current resolved. However, parallel conduction paths suggested previously [23] could explain why contacts would appear pinned in device, but would not appear pinned by photoemission. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freedy, K.M.; McDonnell, S.J. Contacts for Molybdenum Disulfide: Interface Chemistry and Thermal Stability. Materials 2020, 13, 693. https://doi.org/10.3390/ma13030693
Freedy KM, McDonnell SJ. Contacts for Molybdenum Disulfide: Interface Chemistry and Thermal Stability. Materials. 2020; 13(3):693. https://doi.org/10.3390/ma13030693
Chicago/Turabian StyleFreedy, Keren M., and Stephen J. McDonnell. 2020. "Contacts for Molybdenum Disulfide: Interface Chemistry and Thermal Stability" Materials 13, no. 3: 693. https://doi.org/10.3390/ma13030693
APA StyleFreedy, K. M., & McDonnell, S. J. (2020). Contacts for Molybdenum Disulfide: Interface Chemistry and Thermal Stability. Materials, 13(3), 693. https://doi.org/10.3390/ma13030693