Functionalized Microstructured Optical Fibers: Materials, Methods, Applications
Abstract
:1. Introduction
2. Microstructured Optical Fiber-Based Optical Sensors
3. Selective Functionalization of Air Channels of Microstructured Optical Fibers
4. Biosensors for the Selective Detection of Specific Molecules and DNA Based on Functionalized Microstructured Optical Fibers
5. Microstructured Optical Fibers Functionalized with Plasmonic Nanoparticles and MOF-Based Optofluidic Platforms
6. Hybrid Microstructured Optical Fibers
7. Microstructured Optical Fibers Coated with a Layer-By-Layer Assembly of Inversely Charged Polyelectrolyte Layers
8. Microstructured Optical Fibers Functionalized with Fluorescent Nanoparticles
9. Thermography
10. Summary of the Reviewed Functionalized Techniques
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knight, J.; Birks, T.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef]
- Birks, T.; Knight, J.; Russell, P.S.J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961. [Google Scholar] [CrossRef]
- Pinto, A.M.R.; Lopez-Amo, M. Photonic Crystal Fibers for Sensing Applications. J. Sens. 2012, 2012, 625947. [Google Scholar] [CrossRef] [Green Version]
- Doronina-Amitonova, L.V.; Fedotov, I.V.; Fedotov, A.B.; Anokhin, K.V.; Zheltikov, A.M. Neurophotonics: Optical methods to study and control the brain. Physics-Uspekhi 2015, 58, 345–364. [Google Scholar] [CrossRef]
- Tuchin, V.V.; Skibina, Y.S.; Beloglazov, V.I.; Chainikov, M.V.; Skibina, N.B.; Mikhailova, N.A.; Zhestkov, P.M.; Silokhin, I.Y. Sensor properties of hollow-core photonic crystal fibers. Tech. Phys. Lett. 2008, 34, 663–665. [Google Scholar]
- Del Villar, I.; Arregui, F.J.; Zamarreño, C.; Corres, J.; Bariain, C.; Goicoechea, J.; Elosua, C.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Optical sensors based on lossy-mode resonances. Sens. Actuators B Chem. 2017, 240, 174–185. [Google Scholar] [CrossRef]
- Gupta, B.; Verma, R.K. Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications. J. Sens. 2009, 2009, 979761. [Google Scholar] [CrossRef]
- Lægsgaard, J.; Bjarklev, A.; Monro, T. Microstructured optical fibers. In Handbook of Optoelectronics, Second Edition: Concepts, Devices, and Techniques; CRC Press: Boca Raton, FL, USA, 2017; Volume 1, pp. 711–740. ISBN 9781482241792. [Google Scholar]
- Skibina, J.; Malinin, A.; Zanishevskaya, A.; Tuchin, V. Photonic Crystal Waveguide Sensing. In Series in Sensors; Informa UK Limited: London, UK, 2013; Volume 20135247, pp. 1–32. [Google Scholar]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Calcerrada, M.; Gonzalez-Herraez, M.; García-Ruiz, C. Chemical and biochemical sensing applications of microstructured optical fiber-based systems. Laser Photon- Rev. 2015, 9, 604–627. [Google Scholar] [CrossRef] [Green Version]
- Decher, G.; Hong, J.; Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 1992, 210, 831–835. [Google Scholar] [CrossRef]
- Dinish, U.S.; Fu, C.Y.; Soh, K.S.; Ramaswamy, B.; Kumar, A.; Olivo, M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 2012, 33, 293–298. [Google Scholar]
- Noskov, R.E.; Zanishevskaya, A.A.; Shuvalov, A.A.; German, S.V.; Inozemtseva, O.A.; Kochergin, T.P.; Lazareva, E.; Tuchin, V.V.; Ginzburg, P.; Skibina, J.S.; et al. Enabling magnetic resonance imaging of hollow-core microstructured optical fibers via nanocomposite coating. Opt. Express 2019, 27, 9868–9878. [Google Scholar] [CrossRef] [Green Version]
- Ermatov, T.; Petrov, Y.V.; German, S.V.; Zanishevskaya, A.; Shuvalov, A.A.; Atkin, V.; Zakharevich, A.; Khlebtsov, B.; Skibina, J.; Ginzburg, P.; et al. Microstructured Optical Waveguide-Based Endoscopic Probe Coated with Silica Submicron Particles. Materials 2019, 12, 1424. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef] [Green Version]
- Unser, S.; Bruzas, I.; He, J.; Sagle, L.B. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716. [Google Scholar] [CrossRef]
- Sciacca, B.; Monro, T. Dip Biosensor Based on Localized Surface Plasmon Resonance at the Tip of an Optical Fiber. Langmuir 2014, 30, 946–954. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Albert, J. Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef]
- Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.M.; François, A. Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends. Sensors 2017, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-T.; Wang, Q. An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing. Opt. Commun. 2018, 426, 388–394. [Google Scholar] [CrossRef]
- Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Lett. 2017, 17, 4421–4426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiavaioli, F.; Zubiate, P.; Del Villar, I.; Zamarreño, C.; Giannetti, A.; Tombelli, S.; Trono, C.; Arregui, F.J.; Matías, I.R.; Baldini, F. Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors. ACS Sens. 2018, 3, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Uebel, P.; Bauerschmidt, S.T.; Schmidt, M.A.; Russell, P.S.J. A gold-nanotip optical fiber for plasmon-enhanced near-field detection. Appl. Phys. Lett. 2013, 103, 021101. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Roh, S.; Park, J. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 2009, 15, 209–221. [Google Scholar] [CrossRef]
- Quero, G.; Crescitelli, A.; Paladino, D.; Consales, M.; Buosciolo, A.; Giordano, M.; Cutolo, A.; Cusano, A. Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection. Sens. Actuators B Chem. 2011, 152, 196–205. [Google Scholar] [CrossRef]
- Sypabekova, M.; Korganbayev, S.; González-Vila, Á.; Caucheteur, C.; Shaimerdenova, M.; Ayupova, T.; Bekmurzayeva, A.; Vangelista, L.; Tosi, D. Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection. Biosens. Bioelectron. 2019, 146, 111765. [Google Scholar] [CrossRef]
- Guo, T.; González-Vila, Á.; Loyez, M.; Caucheteur, C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. Sensors 2017, 17, 2732. [Google Scholar] [CrossRef] [Green Version]
- Monro, T.; Warren-Smith, S.; Schartner, E.; Francois, A.; Heng, S.; Ebendorff-Heidepriem, H.; Afshar, V.S. Sensing with suspended-core optical fibers. Opt. Fiber Technol. 2010, 16, 343–356. [Google Scholar] [CrossRef]
- Frosz, M.H.; Stefani, A.; Bang, O. Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. Opt. Express 2011, 19, 10471. [Google Scholar] [CrossRef] [Green Version]
- Cubillas, A.M.; Unterkofler, S.; Euser, T.; Etzold, B.J.M.; Jones, A.C.; Sadler, P.J.; Wasserscheid, P.; Russell, P.S.J. Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 2013, 42, 8629. [Google Scholar] [CrossRef] [Green Version]
- Poli, F.; Cucinotta, A.; Selleri, S. Photonic Crystal Fibers: Properties and Applications; Springer: Dordrecht, The Netherlands, 2007; Volume 470, ISBN 9781402063251. [Google Scholar]
- Skibina, Y.S.; Tuchin, V.V.; Beloglazov, V.I.; Shteinmaeer, G.; Betge, I.L.; Wedell, R.; Langhoff, N. Photonic crystal fibres in biomedical investigations. Quantum Electron. 2011, 41, 284–301. [Google Scholar] [CrossRef]
- Malinin, A.V.; Skibina, Y.S.; Tuchin, V.V.; Chainikov, M.V.; Beloglazov, V.I.; Silokhin, I.Y.; Zanishevskaya, A.A.; Dubrovskii, V.A.; Dolmashkin, A.A. The use of hollow-core photonic crystal fibres as biological sensors. Quantum Electron. 2011, 41, 302–307. [Google Scholar] [CrossRef]
- Zheltikov, A.M. Colors of thin films, antiresonant phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides. Physics-Uspekhi 2008, 51, 591–600. [Google Scholar] [CrossRef]
- Coscelli, E.; Sozzi, M.; Poli, F.; Passaro, D.; Cucinotta, A.; Selleri, S.; Corradini, R.; Marchelli, R. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 967–972. [Google Scholar] [CrossRef]
- Zheltikov, A.M. Microstructure Fibers in Biophotonics. In Handbook of Biophotonics; Part 2. Photonics for Health Care; Popp, J., Tuchin, V.V., Chiou, A., Heinemann, S.H., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 77–103. [Google Scholar]
- Yan, D.; Popp, J.; Pletz, M.; Frosch, T. Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers. ACS Photonics 2017, 4, 138–145. [Google Scholar] [CrossRef]
- Bosch, M.E.; Ruiz-Sánchez, A.J.; Rojas, M.F.S.; Ojeda, C.B. Recent Development in Optical Fiber Biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef] [Green Version]
- Bozolan, A.; Gerosa, R.M.; De Matos, C.; Romero, M.A. Corrections to “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber”. IEEE Sens. J. 2012, 12, 832. [Google Scholar] [CrossRef]
- Pidenko, S.A.; Burmistrova, N.A.; Shuvalov, A.; Chibrova, A.A.; Skibina, Y.S.; Goryacheva, I. Microstructured optical fiber-based luminescent biosensing: Is there any light at the end of the tunnel?—A review. Anal. Chim. Acta 2018, 1019, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Talataisong, W.; Ismaeel, R.; Beresna, M.; Brambilla, G. Suspended-Core Microstructured Polymer Optical Fibers and Potential Applications in Sensing. Sensors 2019, 19, 3449. [Google Scholar] [CrossRef] [Green Version]
- Cox, F.M.; Argyros, A.; Large, M.C.J. Liquid-filled hollow core microstructured polymer optical fiber. Opt. Express 2006, 14, 4135–4140. [Google Scholar] [CrossRef]
- Sodré, A.C.; Cordeiro, C.M.D.B.; Biancalana, F.; Roberts, P.J.; Hernandez-Figueroa, H.E.; Cruz, C.B. Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber. Opt. Lett. 2008, 33, 2080–2082. [Google Scholar]
- De Matos, C.; Cordeiro, C.M.D.B.; Dos Santos, E.M.; Ong, J.S.K.; Bozolan, A.; Cruz, C.B. Liquid-core, liquid-cladding photonic crystal fibers. Opt. Express 2007, 15, 11207–11212. [Google Scholar] [CrossRef] [PubMed]
- Schwuchow, A.; Zobel, M.; Csáki, A.; Schröder, K.; Jens, K.; Fritzsche, W.; Schuster, K. Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties. Opt. Mater. Express 2012, 2, 1050. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Gu, C.; Qian, F.; Li, Y.; Zhang, J.Z. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced raman scattering and optical fibers. Anal. Chem. 2011, 83, 5888–5894. [Google Scholar] [CrossRef]
- Han, Y.; Tan, S.; Oo, M.K.K.; Pristinski, D.; Sukhishvili, S.; Du, H. Towards Full-Length Accumulative Surface-Enhanced Raman Scattering-Active Photonic Crystal Fibers. Adv. Mater. 2010, 22, 2647–2651. [Google Scholar] [CrossRef]
- Ferreira, M.F.S.; Castro-Camus, E.; Ottaway, D.J.; López-Higuera, J.M.; Feng, X.; Jin, W.; Jeong, Y.; Picqué, N.; Tong, L.; Reinhard, B.M.; et al. Roadmap on optical sensors. J. Opt. 2017, 19, 083001. [Google Scholar] [CrossRef]
- Schartner, E.; Tsiminis, G.; Francois, A.; Kostecki, R.; Warren-Smith, S.; Nguyen, L.V.; Heng, S.; Reynolds, T.; Klantsataya, E.; Rowland, K.J.; et al. Taming the Light in Microstructured Optical Fibers for Sensing. Int. J. Appl. Glas. Sci. 2015, 6, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Dinish, U.S.; Balasundaram, G.; Chang, Y.T.; Olivo, M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 2014, 7, 956–965. [Google Scholar] [CrossRef]
- Barozzi, M.; Manicardi, A.; Vannucci, A.; Candiani, A.; Sozzi, M.; Konstantaki, M.; Pissadakis, S.; Corradini, R.; Selleri, S.; Cucinotta, A. Optical Fiber Sensors for Label-Free DNA Detection. J. Light. Technol. 2017, 35, 3461–3472. [Google Scholar] [CrossRef]
- Bertucci, A.; Manicardi, A.; Candiani, A.; Giannetti, S.; Cucinotta, A.; Spoto, G.; Konstantaki, M.; Pissadakis, S.; Selleri, S.; Corradini, R. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens. Bioelectron. 2015, 63, 248–254. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Warren-Smith, S.; Cooper, A.; Monro, T. Molecular beacons immobilized within suspended core optical fiber for specific DNA detection. Opt. Express 2012, 20, 29378–29385. [Google Scholar] [CrossRef] [Green Version]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Cordek, J.; Wang, X.; Tan, W. Direct Immobilization of Glutamate Dehydrogenase on Optical Fiber Probes for Ultrasensitive Glutamate Detection. Anal. Chem. 1999, 71, 1529–1533. [Google Scholar] [CrossRef]
- Pidenko, S.A.; Burmistrova, N.A.; Pidenko, P.S.; Shuvalov, A.; Chibrova, A.A.; Skibina, Y.S.; Goryacheva, I. Controlled chemical modification of the internal surface of photonic crystal fibers for application as biosensitive elements. Opt. Mater. 2016, 60, 283–289. [Google Scholar] [CrossRef]
- Kostecki, R.; Ebendorff-Heidepriem, H.; Afshar, S.; McAdam, G.; Davis, C.; Monro, T. Novel polymer functionalization method for exposed-core optical fiber. Opt. Mater. Express 2014, 4, 1515. [Google Scholar] [CrossRef] [Green Version]
- Zanishevskaya, A.; Shuvalov, A.; Skibina, J.; Tuchin, V.V. Blood typing using microstructured waveguide smart cuvette. J. Biomed. Opt. 2015, 20, 40503. [Google Scholar] [CrossRef]
- Oo, M.K.; Han, Y.; Martini, R.; Sukhishvili, S.; Du, H. Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt. Lett. 2009, 34, 968. [Google Scholar] [CrossRef]
- Csáki, A.; Jahn, F.; Latka, I.; Henkel, T.; Malsch, D.; Schneider, T.; Schröder, K.; Schuster, K.; Schwuchow, A.; Spittel, R.; et al. Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers. Small 2010, 6, 2584–2589. [Google Scholar] [CrossRef] [Green Version]
- Schröder, K.; Csáki, A.; Schwuchow, A.; Jahn, F.; Strelau, K.; Latka, I.; Henkel, T.; Malsch, D.; Schuster, K.; Weber, K.; et al. Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications. IEEE Sens. J. 2012, 12, 218–224. [Google Scholar] [CrossRef]
- Ponce, S.; Munoz, M.; Cubillas, A.M.; Euser, T.; Zhang, G.-R.; Russell, P.S.J.; Wasserscheid, P.; Etzold, B.J.M. Stable Immobilization of Size-Controlled Bimetallic Nanoparticles in Photonic Crystal Fiber Microreactor. Chem. Ing. Tech. 2018, 90, 653–659. [Google Scholar] [CrossRef]
- Doherty, B.; Csáki, A.; Thiele, M.; Zeisberger, M.; Schwuchow, A.; Kobelke, J.; Fritzsche, W.; Schmidt, M.A. Nanoparticle functionalised small-core suspended-core fibre—A novel platform for efficient sensing. Biomed. Opt. Express 2017, 8, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, K.; Cui, Y.; Wu, Z.; Shum, P.P.; Auguste, J.L.; Humbert, G.; Wei, L.; Shum, P.; Dinh, X.Q. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels. Lab Chip 2018, 18, 655–661. [Google Scholar] [CrossRef]
- Doherty, B.; Thiele, M.; Warren-Smith, S.; Schartner, E.; Ebendorff-Heidepriem, H.; Fritzsche, W.; Schmidt, M.A. Plasmonic nanoparticle-functionalized exposed-core fiber—an optofluidic refractive index sensing platform. Opt. Lett. 2017, 42, 4395. [Google Scholar] [CrossRef]
- Heng, S.; McDevitt, C.; Kostecki, R.; Morey, J.R.; Eijkelkamp, B.; Ebendorff-Heidepriem, H.; Monro, T.; Abell, A. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions. ACS Appl. Mater. Interfaces 2016, 8, 12727–12732. [Google Scholar] [CrossRef] [Green Version]
- Warren-Smith, S.; Heng, S.; Ebendorff-Heidepriem, H.; Abell, A.; Monro, T. Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber. Langmuir 2011, 27, 5680–5685. [Google Scholar] [CrossRef]
- Heng, S.; Nguyen, M.-C.; Kostecki, R.; Monro, T.; Abell, A. Nanoliter-scale, regenerable ion sensor: Sensing with a surface functionalized microstructured optical fibre. RSC Adv. 2013, 3, 8308. [Google Scholar] [CrossRef]
- Shao, L.; Liu, Z.; Hu, J.; Gunawardena, D.; Tam, H.-Y. Optofluidics in Microstructured Optical Fibers. Micromachines 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Sukhishvili, S.; Du, H. Photonic Crystal Fiber as a Lab-in-Fiber Optofluidic Platform. In Lab-on-Fiber Technology; Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 315–334. ISBN 978-3-319-06998-2. [Google Scholar]
- Monat, C.; Domachuk, P.; Eggleton, B.J. Integrated optofluidics: A new river of light. Nat. Photonics 2007, 1, 106–114. [Google Scholar] [CrossRef]
- Pissadakis, S.; Selleri, S. Optofluidics, Sensors and Actuators in Microstructured Optical Fibers; Woodhead Publishing: Amsterdam, The Netherlands, 2015; ISBN 9781782423478. [Google Scholar]
- Schmidt, M.A.; Argyros, A.; Sorin, F. Hybrid Optical Fibers—An Innovative Platform for In-Fiber Photonic Devices. Adv. Opt. Mater. 2016, 4, 13–36. [Google Scholar] [CrossRef]
- Jain, C.; Rodrigues, B.P.; Wieduwilt, T.; Kobelke, J.; Wondraczek, L.; Schmidt, M.A. Silver metaphosphate glass wires inside silica fibers-a new approach for hybrid optical fibers. Opt. Express 2016, 24, 3258–3267. [Google Scholar] [CrossRef]
- Lee, H.W.; Schmidt, M.A.; Russell, R.F.; Joly, N.; Tyagi, H.K.; Uebel, P.; Russell, P.S.J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 2011, 19, 12180. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Wondraczek, L.; Lee, H.W.; Granzow, N.; Da, N.; Russell, P.S.J. Complex Faraday rotation in microstructured magneto-optical fiber waveguides. Adv. Mater. 2011, 23, 2681–2688. [Google Scholar] [CrossRef]
- Jain, P.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2, 107–118. [Google Scholar] [CrossRef]
- Fini, J.M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 2004, 15, 1120–1128. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Sazio, P.-J.; Peacock, A.C.; Healy, N.; Sparks, J.R.; Krishnamurthi, M.; Gopalan, V.; Badding, J.V. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photonics 2012, 6, 174–179. [Google Scholar] [CrossRef]
- Tyagi, H.K.; Schmidt, M.A.; Sempere, L.P.; Russell, P.S.J. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt. Express 2008, 16, 17227–17236. [Google Scholar] [CrossRef]
- Granzow, N.; Schmidt, M.A.; Chang, W.; Wang, L.; Coulombier, Q.; Troles, J.; Toupin, P.; Hartl, I.; Lee, K.F.; Fermann, M.E.; et al. Mid-infrared supercontinuum generation in As_2S_3-silica “nano-spike” step-index waveguide. Opt. Express 2013, 21, 10969. [Google Scholar] [CrossRef] [Green Version]
- Chemnitz, M.; Wei, J.; Jain, C.; Rodrigues, B.P.; Wieduwilt, T.; Kobelke, J.; Wondraczek, L.; Schmidt, M.A. Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers. Opt. Lett. 2016, 41, 3519. [Google Scholar] [CrossRef]
- Markos, C. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers. Sci. Rep. 2016, 6, 31711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaida, C.; Gebhardt, M.; Kadwani, P.; Leick, L.; Broeng, J.; Shah, L.; Richardson, M. Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod. Opt. Lett. 2013, 38, 691. [Google Scholar] [CrossRef] [PubMed]
- Gaida, C.; Kadwani, P.; Leick, L.; Broeng, J.; Shah, L.; Richardson, M. CW-lasing and amplification in Tm3+-doped photonic crystal fiber rod. Opt. Lett. 2012, 37, 4513. [Google Scholar] [CrossRef]
- Fan, X.; Chen, M.; Shirakawa, A.; Ueda, K.-I.; Olausson, C.B.; Lyngsø, J.K.; Broeng, J. High power Yb-doped photonic bandgap fiber oscillator at 1178 nm. Opt. Express 2012, 20, 14471–14476. [Google Scholar] [CrossRef] [PubMed]
- Sergeeva, A.S.; Gorin, D.A.; Volodkin, D.V. Polyelectrolyte Microcapsule Arrays: Preparation and Biomedical Applications. BioNanoScience 2014, 4, 1–14. [Google Scholar] [CrossRef]
- Shchukin, D.; Gorin, D.A.; Möhwald, H. Ultrasonically Induced Opening of Polyelectrolyte Microcontainers. Langmuir 2006, 22, 7400–7404. [Google Scholar] [CrossRef]
- Timin, A.S.; Gao, H.; Voronin, D.V.; Gorin, D.A.; Sukhorukov, G.B. Inorganic/Organic Multilayer Capsule Composition for Improved Functionality and External Triggering. Adv. Mater. Interfaces 2017, 4, 1600338. [Google Scholar] [CrossRef]
- Donath, E.; Sukhorukov, G.B.; Caruso, F.; Davis, S.A.; Möhwald, H. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed. 1998, 37, 2201–2205. [Google Scholar] [CrossRef]
- Grigoriev, D.; Gorin, D.A.; Sukhorukov, G.B.; Yashchenok, A.; Maltseva, E.; Möhwald, H. Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization. Langmuir 2007, 23, 12388–12396. [Google Scholar] [CrossRef]
- Warren-Smith, S.; Kostecki, R.; Nguyen, L.V.; Monro, T. Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers. Opt. Express 2014, 22, 29493–29504. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242, 1065–1072. [Google Scholar] [CrossRef]
- Chibrova, A.A.; Shuvalov, A.; Skibina, Y.S.; Pidenko, P.S.; Pidenko, S.A.; Burmistrova, N.A.; Goryacheva, I. The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers. Opt. Mater. 2017, 73, 423–427. [Google Scholar] [CrossRef]
- Jorge, P.; Martins, M.; Trindade, T.; Santos, J.L.; Farahi, F. Optical Fiber Sensing Using Quantum Dots. Sensors 2007, 7, 3489–3534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrión, B.; Hernaez, M.; Arregui, F.J.; Goicoechea, J.; Bravo, J.; Matias, I.R. Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings. J. Sens. 2009, 2009, 932471. [Google Scholar] [CrossRef]
- Mak, J.S.W.; Farah, A.A.; Chen, F.; Helmy, A.S. Photonic Crystal Fiber for Efficient Raman Scattering of CdTe Quantum Dots in Aqueous Solution. ACS Nano 2011, 5, 3823–3830. [Google Scholar] [CrossRef]
- Ding, L.; Ruan, Y.; Li, T.; Huang, J.; Warren-Smith, S.; Ebendorff-Heidepriem, H.; Monro, T. Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sens. Actuators B Chem. 2018, 273, 9–17. [Google Scholar] [CrossRef]
- Li, J.; Ebendorff-Heidepriem, H.; Gibson, B.C.; Greentree, A.D.; Hutchinson, M.R.; Jia, P.; Kostecki, R.; Liu, G.; Orth, A.; Ploschner, M.; et al. Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics 2018, 3, 100902. [Google Scholar] [CrossRef]
- Shephard, J.D.; MacPherson, W.N.; Maier, R.R.J.; Jones, J.D.C.; Hand, D.; Mohebbi, M.; George, A.K.; Roberts, P.J.; Knight, J. Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt. Express 2005, 13, 7139–7144. [Google Scholar] [CrossRef]
- Gal, U.; Harrington, J.; Ben-David, M.; Bledt, C.; Syzonenko, N.; Gannot, I. Coherent hollow-core waveguide bundles for thermal imaging. Appl. Opt. 2010, 49, 4700–4709. [Google Scholar] [CrossRef]
- Milstein, Y.; Tepper, M.; Ben-David, M.; Harrington, J.A.; Gannot, I. Photothermal bundle measurement of phantoms and blood as a proof of concept for oxygenation saturation measurement. J. Biophotonics 2011, 4, 219–223. [Google Scholar] [CrossRef]
- Talataisong, W.; Ismaeel, R.; Marques, T.H.R.; Mousavi, S.M.A.; Beresna, M.; Gouveia, M.A.; Sandoghchi, S.R.; Lee, T.; Cordeiro, C.M.D.B.; Brambilla, G. Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform. Sci. Rep. 2018, 8, 8113. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.-H.; Moon, H.; Kim, H.; Lee, G.H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S.H.; Bao, Z.; Hahn, S.K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.; Tapetado, A.; Poudereux, D.; Sanchez-Pena, J.M. Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors 2018, 18, 4263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MOF Type | Functionalization | Application | Ref. |
---|---|---|---|
Suspended-core | Selective deposition of different plasmonic nanoparticles into different hollow channels surrounding the central solid-core | Simultaneous detection of two different biomolecules | [47] |
Hollow-core | Selective filling of core and cladding air channels | Control of the number of guided modes; single-mode guidance | [45,46] |
Hollow-core and suspended-core | Functionalization of fiber surfaces with antibodies specific binding to antigens under test | Specific adsorption-based sensors for human disease diagnosis and prevention; selective adsorption of the target molecules on to fiber surfaces; MOF-based SERS sensor | [14,54] |
Suspended-core | Combination of the fuzzy nano assembly technique and the biotin-streptavidin binding mechanism; hybridization of immobilized peptide nucleic acid probes | Biosensor for selective DNA detection based on suspended-core MOF | [37,55,56,57] |
Hollow-core | Silanization of the fiber inner walls | Creation of biosensitive structure on the example of the covalent binding of horseradish peroxidase to the obtained silanol-modified fiber surface | [60] |
Solid-core and hollow-core | Finely tuned plasmonic layers of Ag-nanoparticles inside the air capillaries of MOFs; a combination of microfluidics and self-assembled monolayer method, leading to a uniform deposition of silver nanoparticles | Fine accumulative SERS signal from the full-length Ag-nanoparticle functionalized MOFs and fine control of the density of deposited Ag nanoparticles | [50,63,64,65] |
Hollow-core | Integration of colloidal bimetallic nanoparticles with predefined parameters into HC-MOFs | In situ catalyst monitoring | [66] |
Suspended-core | Gold nanoparticles-functionalized suspended-core MOF | Efficient RI sensing featuring the real-time analyte monitoring | [67,68] |
Suspended-core and exposed-core | Functionalization of hollow channels with a monoazacrown bearing spiropyran; attachment of the fluorophore to a polyelectrolyte-coated fiber’s surface | Biosensors for the reversible and low volume scale measurement of metal ions; real-time detection of zinc, aluminum, and lithium ions | [70,71,72] |
Solid-core | Integrated micron-sized Ge wire inside the air channel of modified step-index MOF | In-fiber detector and sensor | [84] |
Solid-core and hollow-core | Silver metaphosphate/silica step-index fiber and an arsenic trisulphide waveguide embedded in silica produced by pressure-assisted melt filling | Supercontinuum generation | [85,86] |
Hollow-core | Doping glass materials with Thulium (Tm) and Erbium (Yb) | Generation of high power CW-lasing and the amplification of nanosecond pulses | [88,89,90] |
Hollow-core | LbL assembly of inversely charged polyelectrolytes and magnetite or silica particles at different diameters | Magnetic resonance imaging of hollow-core MOF; increased effective sensing area and the provision of a convenient scaffold for the binding of specific molecules | [15,16] |
Suspended-core and hollow-core | Coating with quantum dots on the inner surfaces of hollow channels | Temperature sensor based on modified MOF sample by the CdSe/ZnS nanocrystals; detection of nitric oxide by using an exposed-core MOF coated with CdTe/CdS core/shell quantum dots | [41,101,102] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermatov, T.; Skibina, J.S.; Tuchin, V.V.; Gorin, D.A. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. Materials 2020, 13, 921. https://doi.org/10.3390/ma13040921
Ermatov T, Skibina JS, Tuchin VV, Gorin DA. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. Materials. 2020; 13(4):921. https://doi.org/10.3390/ma13040921
Chicago/Turabian StyleErmatov, Timur, Julia S. Skibina, Valery V. Tuchin, and Dmitry A. Gorin. 2020. "Functionalized Microstructured Optical Fibers: Materials, Methods, Applications" Materials 13, no. 4: 921. https://doi.org/10.3390/ma13040921
APA StyleErmatov, T., Skibina, J. S., Tuchin, V. V., & Gorin, D. A. (2020). Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. Materials, 13(4), 921. https://doi.org/10.3390/ma13040921