Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology, Topography, and Phase Structure of Blank and Composite Ni Coatings
3.2. Corrosion Resistance
3.2.1. dc Polarization
3.2.2. Electrochemical Impedance Spectroscopy
3.3. XPS Surface Analysis of Coatings
3.4. Chemical Analysis of Corrosive Solutions
4. Conclusions
- (1)
- DES-based plating baths are an excellent environment for the electrodeposition of metal composite coatings.
- (2)
- The addition of cerium molybdenum oxide hydrate microflakes to a plating bath modifies the cathodic process sufficiently to obtain nanocrystalline nickel composite coatings with a smaller (6.3 nm) crystallite size than blank Ni coating (10.4 nm).
- (3)
- The codeposition of large CeMo oxide microflakes caused microcracks in the coating and some deterioration of the protective properties of composite coating.
- (4)
- Charge transfer resistance for both types of coatings increased over 7 days exposure in 0.05 M NaCl solution. However, even after this time, the Rct for a blank Ni exceeded five times (581 kΩ cm2) that of a composite one (103 kΩ cm2).
- (5)
- On the basis of spectroscopic studies (XPS, ICP-OES and ICP-MS), it can be stated for composite Ni coating that in the course of corrosion, NiO transforms to Ni(OH)2, while molybdenum oxides nearly completely disappear from the surface of composite coating. The removal of cerium species was less than that of the molybdenum species, which suggests that the corrosion process is more selective towards Mo. The smaller thickness of the protective layer and locally reduced coverage results from the consumption of the Ce/Mo species during the corrosion process.
- (6)
- It would be interesting to develop the described research towards the synthesis of nanoflakes (or nanowires) of mixed cerium and molybdenum compounds. Reducing the particle size to the nano-scale would result in a composite coating with a better dispersed oxide phase. This, in turn, would improve the tightness of the metal coating.
Author Contributions
Funding
Conflicts of Interest
References
- Abbott, A.P.; McKenzie, K.J. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 2006, 8, 4265–4279. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.; Frisch, G.; Ryder, K. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335–358. [Google Scholar] [CrossRef]
- Simka, W.; Puszczyk, D.; Nawrat, G. Electrodeposition of metals from non-aqueous solutions. Electrochimica Acta 2009, 54, 5307–5319. [Google Scholar] [CrossRef]
- Liu, F.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Electrodeposition of metals and alloys from ionic liquids. J. Alloy. Compd. 2016, 654, 163–170. [Google Scholar] [CrossRef]
- Abbott, A.; Boothby, D.; Capper, G.; Davies, D.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.; Ryder, K. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.; Ballantyne, A.; Harris, R.; Juma, J.A.; Ryder, K.; Forrest, G. A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochimica Acta 2015, 176, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zou, X.; Lu, Y.; Rao, S.; Xie, X.; Pang, Z.; Lu, X.; Xu, Q.; Zhou, Z. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 2018, 43, 15673–15686. [Google Scholar] [CrossRef]
- Abbott, A.; El Ttaib, K.; Ryder, K.; Smith, E.L. Electrodeposition of nickel using eutectic based ionic liquids. Trans. IMF 2008, 86, 234–240. [Google Scholar] [CrossRef]
- Abbott, A.; Ballantyne, A.; Harris, R.; Juma, J.A.; Ryder, K. Bright metal coatings from sustainable electrolytes: The effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Phys. Chem. Chem. Phys. 2017, 19, 3219–3231. [Google Scholar] [CrossRef] [Green Version]
- Cherigui, E.A.M.; Sentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. On the Control and Effect of Water Content during the Electrodeposition of Ni Nanostructures from Deep Eutectic Solvents. J. Phys. Chem. C 2018, 122, 23129–23142. [Google Scholar] [CrossRef] [Green Version]
- Fashu, S.; Gu, C.; Zhang, J.; Huang, M.-L.; Wang, X.-L.; Gu, C. Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans. Nonferrous Met. Soc. China 2015, 25, 2054–2064. [Google Scholar] [CrossRef]
- Vijayakumar, J.; Mohan, S.; Kumar, S.A.; Suseendiran, S.; Pavithra, S. Electrodeposition of Ni–Co–Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int. J. Hydrogen Energy 2013, 38, 10208–10214. [Google Scholar] [CrossRef]
- Yanai, T.; Shiraishi, K.; Watanabe, Y.; Nakano, M.; Ohgai, T.; Suzuki, K.; Fukunaga, H. Electroplated Fe–Ni Films Prepared From Deep Eutectic Solvents. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Gu, C.; Wang, X.; Tu, J. Electrodeposition of Ni–Co alloys from a deep eutectic solvent. Surf. Coatings Technol. 2012, 206, 3632–3638. [Google Scholar] [CrossRef]
- Golgovici, F.; Pumnea, A.; Petica, A.; Manea, A.C.; Brincoveanu, O.; Enachescu, M.; Anicai, L. Ni–Mo alloy nanostructures as cathodic materials for hydrogen evolution reaction during seawater electrolysis. Chem. Pap. 2018, 72, 1889–1903. [Google Scholar] [CrossRef]
- Martis, P.; Dilimon, V.; Delhalle, J.; Mekhalif, Z. Electro-generated nickel/carbon nanotube composites in ionic liquid. Electrochimica Acta 2010, 55, 5407–5410. [Google Scholar] [CrossRef]
- Liu, D.; Sun, J.; Gui, Z.; Song, K.; Luo, L.; Wu, Y. Super-low friction nickel based carbon nanotube composite coating electro-deposited from eutectic solvents. Diam. Relat. Mater. 2017, 74, 229–232. [Google Scholar] [CrossRef]
- You, Y.H.; Gu, C.D.; Wang, X.L.; Tu, J.P. Electrochemical preparation and characterization of Ni-PTFE composite coatings from a non-aqueous solution without additives. Int. Electrochem. Sci. 2012, 7, 12440–12455. [Google Scholar]
- Li, R.; Chu, Q.; Liang, J. Electrodeposition and characterization of Ni–SiC composite coatings from deep eutectic solvent. RSC Adv. 2015, 5, 44933–44942. [Google Scholar] [CrossRef]
- Li, R.; Hou, Y.; Liang, J. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance. Appl. Surf. Sci. 2016, 367, 449–458. [Google Scholar] [CrossRef]
- Li, R.; Hou, Y.; Liu, B.; Wang, D.; Liang, J. Electrodeposition of homogenous Ni/SiO2 nanocomposite coatings from deep eutectic solvent with in-situ synthesized SiO2 nanoparticles. Electrochimica Acta 2016, 222, 1272–1280. [Google Scholar] [CrossRef]
- Protsenko, V.; Bogdanov, D.; Korniy, S.; Kityk, A.; Baskevich, A.; Danilov, F. Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 24604–24616. [Google Scholar] [CrossRef]
- Dong, M.; Lin, Q.; Sun, H.; Chen, D.; Zhang, T.; Wu, Q.; Li, S. Synthesis of Cerium Molybdate Hierarchical Architectures and Their Novel Photocatalytic and Adsorption Performances. Cryst. Growth Des. 2011, 11, 5002–5009. [Google Scholar] [CrossRef]
- Xu, M.-K.; Ouyang, Z.-H.; Shen, Z. Topological evolution of cerium(III) molybdate microflake assemblies induced by amino acids. Chin. Chem. Lett. 2016, 27, 673–677. [Google Scholar] [CrossRef]
- Ayni, S.; Sabet, M.; Salavati-Niasari, M.; Hamadanian, M. Synthesis and characterization of cerium molybdate nanostructures via a simple solvothermal method and investigation of their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2016, 27, 7342–7352. [Google Scholar] [CrossRef]
- Kartsonakis, I.; Kordas, G. Synthesis and Characterization of Cerium Molybdate Nanocontainers and Their Inhibitor Complexes. J. Am. Ceram. Soc. 2010, 93, 65–73. [Google Scholar] [CrossRef]
- Kartsonakis, I.; Balaskas, A.C.; Kordas, G.C. Influence of cerium molybdate containers on the corrosion performance of epoxy coated aluminium alloys 2024-T3. Corros. Sci. 2011, 53, 3771–3779. [Google Scholar] [CrossRef]
- Kartsonakis, I.; Kontogiani, P.; Pappas, G.; Kordas, G. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli. J. Nanoparticle Res. 2013, 15, 1759. [Google Scholar] [CrossRef]
- Patel, M.; Bhanvase, B.A.; Sonawane, S. Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach. Ultrason. Sonochemistry 2013, 20, 906–913. [Google Scholar] [CrossRef]
- Yasakau, K.; Kallip, S.; Zheludkevich, M.; Ferreira, M. Active corrosion protection of AA2024 by sol–gel coatings with cerium molybdate nanowires. Electrochimica Acta 2013, 112, 236–246. [Google Scholar] [CrossRef]
- Yasakau, K.; Tedim, J.; Zheludkevich, M.; Drumm, R.; Shem, M.; Wittmar, M.; Veith, M.; Ferreira, M. Cerium molybdate nanowires for active corrosion protection of aluminium alloys. Corros. Sci. 2012, 58, 41–51. [Google Scholar] [CrossRef]
- Lehr, I.; Saidman, S. Corrosion protection of AZ91D magnesium alloy by a cerium-molybdenum coating-The effect of citric acid as an additive. J. Magnes. Alloy. 2018, 6, 356–365. [Google Scholar] [CrossRef]
- Mu, S.; Du, J.; Jiang, H.; Li, W. Composition analysis and corrosion performance of a Mo–Ce conversion coating on AZ91 magnesium alloy. Surf. Coatings Technol. 2014, 254, 364–370. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Patel, M.; Sonawane, S. Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition. Corros. Sci. 2014, 88, 170–177. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Urcezino, A.S.C.; Dos Santos, L.P.M.; Casciano, P.N.S.; Correia, A.N.; De Lima-Neto, P. Electrodeposition study of Ni coatings on copper from choline chloride-based deep eutectic solvents. J. Braz. Chem. Soc. 2017, 28, 1193–1203. [Google Scholar] [CrossRef]
- Winiarski, J.; Cieślikowska, B.; Tylus, W.; Kunicki, P.; Szczygieł, B. Corrosion of nanocrystalline nickel coatings electrodeposited from choline chloride:ethylene glycol deep eutectic solvent exposed in 0.05 M NaCl solution. Appl. Surf. Sci. 2019, 470, 331–339. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. [Google Scholar] [CrossRef]
- Tang, Y.; Pattengale, B.; Ludwig, J.; Atifi, A.; Zinovev, A.V.; Dong, B.; Kong, Q.; Zuo, X.; Zhang, X.; Huang, J. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Sci. Rep. 2015, 5, 18505. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.N. Characterization of NiO by XPS. Surf. Sci. Spectra 1994, 3, 231–238. [Google Scholar] [CrossRef]
- Espinos, J.P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J.P.; González-Elipe, A.R.; González-Elipe, A.R. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. J. Phys. Chem. B 2002, 106, 6921–6929. [Google Scholar] [CrossRef]
- Shaikh, J.; Pawar, R.C.; Devan, R.; Ma, Y.; Salvi, P.; Kolekar, S.; Patil, P. Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochimica Acta 2011, 56, 2127–2134. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Morales, J.; Espinos, J.P.; Caballero, A.; Gonzalez-Elipe, A.R.; Mejías, J.A.; González-Elipe, A.R. XPS Study of Interface and Ligand Effects in Supported Cu2O and CuO Nanometric Particles. J. Phys. Chem. B 2005, 109, 7758–7765. [Google Scholar] [CrossRef]
- González-Elipe, A.R.; Holgado, J.P.; Alvarez, R.; Munuera, G. Use of factor analysis and XPS to study defective nickel oxide. J. Phys. Chem. 1992, 96, 3080–3086. [Google Scholar] [CrossRef]
- Holgado, J.P.; Alvarez, R.; Munuera, G. Study of CeO2 XPS spectra by factor analysis: Reduction of CeO2. Appl. Surf. Sci. 2000, 161, 301–315. [Google Scholar] [CrossRef]
- Al-Doghachi, F.A.J.; Rashid, U.; Taufiq-Yap, Y.H. Investigation of Ce(iii) promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry-reforming of methane. RSC Adv. 2016, 6, 10372–10384. [Google Scholar] [CrossRef]
- Beche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 2008, 40, 264–267. [Google Scholar] [CrossRef]
- Li, Z.; Gao, L.; Zheng, S. SEM, XPS, and FTIR studies of MoO3 dispersion on mesoporous silicate MCM-41 by calcination. Mater. Lett. 2003, 57, 4605–4610. [Google Scholar] [CrossRef]
- Reddy, B.M.; Chowdhury, B.; Reddy, E.P.; Fernández, A. An XPS study of dispersion and chemical state of MoO3 on Al2O3-TiO2 binary oxide support. Appl. Catal. A: Gen. 2001, 213, 279–288. [Google Scholar] [CrossRef]
- Lee, Y.J.; Nichols, W.T.; Kim, D.-G.; Kim, Y.D. Chemical vapour transport synthesis and optical characterization of MoO3thin films. J. Phys. D: Appl. Phys. 2009, 42, 115419. [Google Scholar] [CrossRef]
- Li, H.; Ye, H.; Xu, Z.; Wang, C.; Yin, J.; Zhu, H. Freestanding MoO2/Mo2 C imbedded carbon fibers for Li-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 2908–2914. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cook, J.; Tolbert, S.H.; Dunn, B. The Development of Pseudocapacitive Properties in Nanosized-MoO2. J. Electrochem. Soc. 2015, 162, A5083–A5090. [Google Scholar] [CrossRef]
- Marin-Flores, O.; Scudiero, L.; Ha, S. X-ray diffraction and photoelectron spectroscopy studies of MoO2 as catalyst for the partial oxidation of isooctane. Surf. Sci. 2009, 603, 2327–2332. [Google Scholar] [CrossRef]
Time (h) | Rs/ Ω cm2 | CPEdl, Y0/ Ω−1 cm−2 sα | CPEdl, α | Rct/ kΩ cm2 |
---|---|---|---|---|
24 | 61 | 9.0 × 10−5 | 0.94 | 214.8 |
48 | 61 | 8.6 × 10−5 | 0.94 | 299.6 |
72 | 61 | 8.4 × 10−5 | 0.93 | 394.8 |
96 | 60 | 8.3 × 10−5 | 0.93 | 478.8 |
120 | 59 | 8.2 × 10−5 | 0.93 | 552.4 |
144 | 59 | 8.1 × 10−5 | 0.94 | 604.8 |
168 | 58 | 8.2 × 10−5 | 0.93 | 580.8 |
Time (h) | Rs/ Ω cm2 | CPEfilm, Y0/ Ω−1 cm−2 sα | CPEfilm, α | Rfilm/ kΩ cm2 | CPEdl, Y0/ Ω−1 cm−2 sα | CPEdl, α | Rct/ kΩ cm2 |
---|---|---|---|---|---|---|---|
24 | 92 | 1.0 × 10−4 | 0.95 | 5.6 | 8.5 × 10−5 | 0.66 | 74.8 |
48 | 92 | 1.0 × 10−4 | 0.94 | 5.9 | 9.9 × 10−5 | 0.69 | 59.4 |
72 | 93 | 9.9 × 10−5 | 0.94 | 7.0 | 9.8 × 10−5 | 0.68 | 77.1 |
96 | 92 | 9.8 × 10−5 | 0.94 | 7.9 | 9.2 × 10−5 | 0.67 | 81.9 |
120 | 92 | 9.7 × 10−5 | 0.94 | 8.6 | 8.6 × 10−5 | 0.67 | 84.6 |
144 | 91 | 9.6 × 10−5 | 0.94 | 8.2 | 8.4 × 10−5 | 0.65 | 92.2 |
168 | 91 | 9.5 × 10−5 | 0.94 | 8.8 | 7.9 × 10−5 | 0.64 | 102.7 |
Element | BE / eV | Blank Ni Before | Blank Ni After | |
---|---|---|---|---|
Ni2p | Ni(A) | 852.4 | - | 1.2 |
Ni(B) | 854.0 | 1.9 | 3.2 | |
Ni(C) | 856.3 | 3.7 | 9.7 | |
Cu2p | Cu(A) | 932.5 | - | 1.4 |
Cu(B) | 933.5 | - | 2.1 | |
O1s | O(A) | 529.5 | - | 15.6 |
O(B) | 530.8 | 12.2 | 30.5 | |
O(C) | 532.4 | 82.2 | 36.7 |
Element | BE/eV | NiCeMo Before | NiCeMo After | CeMo Reference | |
---|---|---|---|---|---|
Ni2p | Ni(A) | 852.5 | 11.2 | 5.8 | - |
Ni(B) | 853.7 | 14.4 | 3.8 | - | |
Ni(C) | 856.3 | 12.2 | 5.1 | - | |
Cu2p | Cu(A) | 932.5 | - | 5.1 | - |
Cu(B) | 933.3 | - | 2.9 | - | |
Ce3d | Ce(A/B) | 881.8/885.7 | 6.1 | 2.4 | 11.6 |
Mo3d | Mo(A) | 230.6 | 1.2 | - | 5.4 |
Mo(B) | 232.7 | 3.2 | - | 15.1 | |
Mo(C) | 229.3 | 1.2 | - | - | |
O1s | O(A) | 529.5 | 21.8 | 0.3 | 6.0 |
O(B) | 530.8 | 21.3 | 11.6 | 22.5 | |
O(C) | 532.4 | 7.4 | 63.0 | 39.4 |
Element | Units | Blank (Demi Water + 0.05M NaCl) | Blank Ni | Blank Ni_m * | Composite Ni | Composite Ni _m * |
---|---|---|---|---|---|---|
Ni | µg/L | <2.0 2 | 2620 ± 370 1 | 4230 ± 590 1 | 2730 ± 380 1 | 6000 ± 840 1 |
Cu | µg/L | 2.4 ± 0,4 2 | 2.1 ± 0.3 2 | 2.2 ± 0.3 2 | 29 ± 4 2 | 14 ± 2 2 |
Ce | µg/L | <0.1 2 | <0.1 2 | < 0.1 2 | 0.33 ± 0.07 2 | 0.13 ± 0.03 2 |
Mo | µg/L | 5.5 ± 0.8 2 | 5.3 ± 0.8 2 | 17 ± 3 2 | 390 ± 55 2 | 374 ± 52 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiarski, J.; Niciejewska, A.; Ryl, J.; Darowicki, K.; Baśladyńska, S.; Winiarska, K.; Szczygieł, B. Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent. Materials 2020, 13, 924. https://doi.org/10.3390/ma13040924
Winiarski J, Niciejewska A, Ryl J, Darowicki K, Baśladyńska S, Winiarska K, Szczygieł B. Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent. Materials. 2020; 13(4):924. https://doi.org/10.3390/ma13040924
Chicago/Turabian StyleWiniarski, Juliusz, Anna Niciejewska, Jacek Ryl, Kazimierz Darowicki, Sylwia Baśladyńska, Katarzyna Winiarska, and Bogdan Szczygieł. 2020. "Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent" Materials 13, no. 4: 924. https://doi.org/10.3390/ma13040924
APA StyleWiniarski, J., Niciejewska, A., Ryl, J., Darowicki, K., Baśladyńska, S., Winiarska, K., & Szczygieł, B. (2020). Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent. Materials, 13(4), 924. https://doi.org/10.3390/ma13040924