Viability and Stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) Induced by Silicate-Based Materials for Their Potential Use in Regenerative Endodontics: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.2.1. Sources of Information
2.2.2. Search Terms
2.2.3. Study Selection
2.2.4. Study Data
2.3. Quality Assessment
3. Results
3.1. Study Selection and Flow Diagram
3.2. Study Characteristics
3.2.1. Cell Variant and Origin
3.2.2. Bioceramic Materials Used and Concentration
3.2.3. Activity Analysis
3.3. Quality Assessment
3.4. Study Results
3.4.1. Results for hSCAP Cell Viability, Migration, and Proliferation Assays
3.4.2. Results for the Quantification of hSCAP Activity-Related Marker Expression
3.4.3. Results for hSCAP Mineralization Potential Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.G.; Malek, M.; Sigurdsson, A.; Lin, L.M.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef] [PubMed]
- Saoud, T.; Ricucci, D.; Lin, L.; Gaengler, P. Regeneration and Repair in Endodontics—A Special Issue of the Regenerative Endodontics—A New Era in Clinical Endodontics. Dent. J. 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.J.; Rajan, S.; Bhujel, N.; Kang, J.; Duggal, M.; Nazzal, H. Regenerative Endodontic Therapy in the Management of Nonvital Immature Permanent Teeth: A Systematic Review—Outcome Evaluation and Meta-analysis. J. Endod. 2017, 43, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Ruparel, N.B.; De Almeida, J.F.A.; Henry, M.A.; Diogenes, A. Characterization of a stem cell of apical papilla cell line: Effect of passage on cellular phenotype. J. Endod. 2013, 39, 357–363. [Google Scholar] [CrossRef]
- Cui, D.; Li, H.; Wan, M.; Peng, Y.; Xu, X.; Zhou, X.; Zheng, L. The Origin and Identification of Mesenchymal Stem Cells in Teeth: From Odontogenic to Non-odontogenic. Curr. Stem Cell Res. Ther. 2018, 13, 39–45. [Google Scholar] [CrossRef]
- Spagnuolo, G.; Codispoti, B.; Marrelli, M.; Rengo, C.; Rengo, S.; Tatullo, M. Commitment of Oral-Derived Stem Cells in Dental and Maxillofacial Applications. Dent J. 2018, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Lv, F.J.; Tuan, R.S.; Cheung, K.M.C.; Leung, V.Y.L. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 2014, 32, 1408–1419. [Google Scholar] [CrossRef]
- Nada, O.A.; El Backly, R.M. Stem Cells From the Apical Papilla (SCAP) as a Tool for Endogenous Tissue Regeneration. Front. Bioeng. Biotechnol. 2018, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Sonoyama, W.; Liu, Y.; Yamaza, T.; Tuan, R.S.; Wang, S.; Shi, S.; Huang, G.T. Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. J. Endod. 2008, 34, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Bakopoulou, A.; Leyhausen, G.; Volk, J.; Koidis, P.; Geurtsen, W. Comparative characterization of STRO-1neg/CD146pos and STRO-1pos/CD146pos apical papilla stem cells enriched with flow cytometry. Arch. Oral Biol. 2013, 58, 1556–1568. [Google Scholar] [CrossRef]
- Bakopoulou, A.; Leyhausen, G.; Volk, J.; Tsiftsoglou, A.; Garefis, P.; Koidis, P.; Geurtsen, W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch. Oral Biol. 2011, 56, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Chueh, L.H.; Huang, G.T.J. Immature Teeth with Periradicular Periodontitis or Abscess Undergoing Apexogenesis: A Paradigm Shift. J. Endod. 2006, 32, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Chen, Y.H.M.; Chen, K.L. Conservative treatment of immature teeth with apical periodontitis using triple antibiotic paste disinfection. J. Dent. Sci. 2016, 11, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, I.Y.; Lee, S.J.; Hargreaves, K.M. Biologically Based Treatment of Immature Permanent Teeth with Pulpal Necrosis: A Case Series. J. Endod. 2008, 34, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.T.J. A paradigm shift in endodontic management of immature teeth: Conservation of stem cells for regeneration. J. Dent. 2008, 36, 379–386. [Google Scholar] [CrossRef]
- Chrepa, V.; Pitcher, B.; Henry, M.A.; Diogenes, A. Survival of the Apical Papilla and Its Resident Stem Cells in a Case of Advanced Pulpal Necrosis and Apical Periodontitis. J. Endod. 2017, 43, 561–567. [Google Scholar] [CrossRef]
- Diogenes, A.; Ruparel, N.B. Regenerative Endodontic Procedures: Clinical Outcomes. Dent. Clin. N. Am. 2017, 61, 111–125. [Google Scholar] [CrossRef]
- Lee, B.N.; Moon, J.W.; Chang, H.S.; Hwang, I.N.; Oh, W.M.; Hwang, Y.C. A review of the regenerative endodontic treatment procedure. Restor. Dent. Endod. 2015, 40, 179. [Google Scholar] [CrossRef]
- Raghavendra, S.S.; Jadhav, G.R.; Gathani, K.M.; Kotadia, P. Bioceramics in endodontics—A review. J. Istanb. Univ. Fac. Dent. 2017, 51, S128–S137. [Google Scholar] [CrossRef]
- Wigler, R.; Kaufman, A.Y.; Lin, S.; Steinbock, N.; Hazan-Molina, H.; Torneck, C.D. Revascularization: A treatment for permanent teeth with necrotic pulp and incomplete root development. J. Endod. 2013, 39, 319–326. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Boccaccini, A.R.; Hupa, L.; Watts, D.C. Bioactive dental materials—Do they exist and what does bioactivity mean? Dent. Mater. 2018, 34, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Staffoli, S.; Plotino, G.; Torrijos, B.G.N.; Grande, N.M.; Bossù, M.; Gambarini, G.; Polimeni, A. Regenerative endodontic procedures using contemporary endodontic materials. Materials (Basel) 2019, 16, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, J.L.; Rodríguez-Lozano, F.J.; Llena, C.; Sauro, S.; Forner, L. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: A systematic review. Materials (Basel) 2019, 12, 1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortoluzzi, E.A.; Niu, L.N.; Palani, C.D.; eL-awady, A.R.; Hammond, B.D.; Pei, D.D.; Tian, F.C.; Cutler, C.W.; Pashley, D.H.; Tay, F.R. Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent. Mater. 2015, 31, 1510–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, L.N.; Pei, D.D.; Morris, M.; Jiao, K.; Huang, X.Q.; Primus, C.M.; Susin, L.F.; Bergeron, B.E.; Pashley, D.H.; Tay, F.R. Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement. Dent. Mater. 2016, 32, 1235–1247. [Google Scholar] [CrossRef]
- Nagendrababu, V.; Pulikkotil, S.J.; Veettil, S.K.; Jinatongthai, P.; Gutmann, J.L. Efficacy of Biodentine and Mineral Trioxide Aggregate in Primary Molar Pulpotomies—A Systematic Review and Meta-Analysis With Trial Sequential Analysis of Randomized Clinical Trials. J. Evid. Based Dent. Pract. 2019, 19, 17–27. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; El-Negoly, S.A.; Zaen El-Din, A.M.; El-Zekrid, M.H.; Grawish, L.M.; Grawish, H.M.; Grawish, M.E. Biodentine versus mineral trioxide aggregate as a direct pulp capping material for human mature permanent teeth—A systematic review. J. Conserv. Dent. 2018, 21, 466–473. [Google Scholar] [CrossRef]
- Didilescu, A.C.; Cristache, C.M.; Andrei, M.; Voicu, G.; Perlea, P. The effect of dental pulp-capping materials on hard-tissue barrier formation: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2018, 149, 903–917. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Española de Nutrición Humana y Dietética 2016, 20, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a knowledge representation for clinical questions. AMIA Annu. Symp. Proc. 2006, 2006, 359–363. [Google Scholar]
- Faggion, C.M. Guidelines for reporting pre-clinical in vitro studies on dental materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.M.; Bi, J.; Yu, S.; Yang, N.; Song, B.; Chen, X. Cell migration and osteo/odontogenesis stimulation of iRoot FS as a potential apical barrier material in apexification. Int. Endod. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Saberi, E.; Farhad-Mollashahi, N.; Sargolzaei-Aval, F.; Saberi, M. Proliferation, odontogenic/osteogenic differentiation, and cytokine production by human stem cells of the apical papilla induced by biomaterials: A comparative study. Clin. Cosmet. Investig. Dent. 2019, 11, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.A.; Takimoto, K.; Wealleans, J.; Diogenes, A. Effect of 3 Bioceramic Materials on Stem Cells of the Apical Papilla Proliferation and Differentiation Using a Dentin Disk Model. J. Endod. 2018, 44, 599–603. [Google Scholar] [CrossRef]
- Hajizadeh, N.; Madani, Z.S.; Zabihi, E.; Golpour, M.; Zahedpasha, A.; Mohammadnia, M. Effect of MTA and CEM on Mineralization-Associated Gene Expression in Stem Cells Derived from Apical Papilla. Iran. Endod. J. 2018, 13, 94–101. [Google Scholar] [CrossRef]
- Wongwatanasanti, N.; Jantarat, J.; Sritanaudomchai, H.; Hargreaves, K.M. Effect of Bioceramic Materials on Proliferation and Odontoblast Differentiation of Human Stem Cells from the Apical Papilla. J. Endod. 2018, 44, 1270–1275. [Google Scholar] [CrossRef]
- Sequeira, D.B.; Seabra, C.M.; Palma, P.J.; Cardoso, A.L.; Peça, J.; Santos, J.M. Effects of a New Bioceramic Material on Human Apical Papilla Cells. J. Funct. Biomater. 2018, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Liu, Y.; Liu, X.M.; Jiang, L.M.; Chen, X. iRoot FM exerts an antibacterial effect on Porphyromonas endodontalis and improves the properties of stem cells from the apical papilla. Int. Endod. J. 2018, 51, 1139–1148. [Google Scholar] [CrossRef]
- Peters, O.A.; Galicia, J.; Arias, A.; Tolar, M.; Ng, E.; Shin, S.J. Effects of two calcium silicate cements on cell viability, angiogenic growth factor release and related gene expression in stem cells from the apical papilla. Int. Endod. J. 2016, 49, 1132–1140. [Google Scholar] [CrossRef]
- Schneider, R.; Holland, G.R.; Chiego, D.; Hu, J.C.C.; Nör, J.E.; Botero, T.M. White mineral trioxide aggregate induces migration and proliferation of stem cells from the apical papilla. J. Endod. 2014, 40, 931–936. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Wu, J.; Yu, Y.; Wang, Y.; Xie, L.; Zhang, G.; Yu, J.; Zhang, C. Mineral Trioxide Aggregate Promotes the Odonto/Osteogenic Differentiation and Dentinogenesis of Stem Cells from Apical Papilla via Nuclear Factor Kappa B Signaling Pathway. J. Endod. 2014, 40, 640–647. [Google Scholar] [CrossRef] [PubMed]
Author | Cell Type and Origin | Bioceramics Used (concentration *) | Activity Analysis ** | Duration |
---|---|---|---|---|
Liu et al. 2019 [32] | hSCAP from impacted immature third molars | iRoot FS (2 mg/mL), PR MTA (2 mg/mL) | Wound healing assay (DSPP, ALP) | 12, 24 h |
BrdU labeling assay | 20 h | |||
MTT assay | 1, 2, 3, 4 days | |||
Transwell migration assay | 24 h | |||
qRT-PCR (DSPP, ALP) | 6 days | |||
Western blot analysis | 6 days | |||
Alizarin red staining | 4 weeks | |||
Saberi et al. 2019 [33] | hSCAP from impacted immature third molars | PR MTA (200 μg/mL), BD (2 mg/mL), CEM (20 mg/mL), Atlantik (20 μg/mL), OCP (200 μg/mL) | Trypan blue cell proliferation assay | 1, 3, 5, 7, 9 days |
Flow cytometry | 5 days | |||
ALP activity | 72 h | |||
Alizarin red staining | 21 days | |||
qRT-PCR (ALP, DSPP, RUNX2, OSX, OCN, BSP, TNF-α, IL-Iα, IL-Iβ, IL-6) | 3, 7 days | |||
Miller et al. 2018 [34] | hSCAP from mandibular immature third molar | PR MTA, BD, ES, ES-FS | OZBlue cell viability assay | 7 days |
qRT-PCR (ALP, DSPP, IBSP, Runx2) | 21 days | |||
Alizarin red staining | 21 days | |||
Hajizadeh et al. 2018 [35] | hSCAP from impacted immature third molar | PR MTA, CEM | Alizarin red staining | 2, 3 weeks |
qRT-PCR (ALP, DSPP, OSC, SP7) | 2, 3 weeks | |||
Wongwatanasanti et al. 2018 [36] | hSCAP from mandibularimmature third molar | PR MTA(0.13 mg/mL), BD (0.14 mg/mL), R MTA (0.1 mg/mL) | MTT assay | 1, 3, 7, 14 days |
Alizarin red staining | 7, 14, 21 days | |||
qRT-PCR (OCN, DSPP, MEPE, DMP-1) | 1, 7, 14, 21 days | |||
Sequeira et al. 2018 [37] | APC from immature third molars | PR MTA, BD, PG | Alamar blue cell viability assay | 21, 48, 72 h |
Wound healing assay | 0, 24, 28 h | |||
Bi et al. 2018 [38] | hSCAP from impacted immature third molars | iRoot FM (0.5 mg/mL) | CCK-8 cell viability assay kit | 1, 3, 5 days |
qRT-PCR (DMP-1, ALP) | 10 days | |||
Western blot analysis (DMP-1, ALP) | 10 days | |||
Alizarin red staining | 4 weeks | |||
Peters et al. 2015 [39] | hSCAP from immature third molars | PR MTA, BD | XTT cell viability assay kit | 1, 3, 7 days |
ELISA (VEGF, ANGPT1) | 1, 3 days | |||
qRT-PCR (VEGFA, VEGFC, FIGF, ANGPT1, ANG, FGF2, TGFB1, MMP2, IL8, TIMP2) | 3 days | |||
Schneider et al. 2015 [40] | hSCAP | PR MTA (100 mg/35 μL) | Transwell migration assay | 1, 3, 6, 12, 24, 48, 72 h |
WST-1 proliferation assay | 1, 3, 5, 7, 9, 11, 14 days | |||
Yan et al. 2014 [41] | hSCAP from immature third molars | PR MTA (2 mg/mL) | Coulter counter cell proliferation assay | 1, 3, 5, 7, 9 days |
Flow cytometry | 5 days | |||
ALP activity | 3 days | |||
Alizarin red staining | 14 days | |||
qRT-PCR (ALP, DSPP, RUNX2, OSX, OCN, BSP, TNFα, IL-1α, IL-1β, IL-6) | 3, 7 days |
Material | Abbreviation | Manufacturer | Times Studied |
---|---|---|---|
ProRoot MTA | PR MTA | Dentsply Tulsa Dental, Tulsa, OK, USA | 9 |
Biodentine | BD | Septodont, Saint Maurdes-Fosses, France | 5 |
iRoot Fast Set root repair material | iRoot FS | Dentsply Tulsa Dental, Tulsa, OK, USA | 1 |
iRoot FM | − | Innovative Bioceramix Inc., Vancouver, BC, Canada | 1 |
RetroMTA | R MTA | BioMTA, Seoul, Korea | 1 |
CEM cement | CEM | NSK, Tokyo, Japan | 1 |
CEMb | BioniqueDent, Tehran, Iran | 1 | |
Endosequence BC Root Repair Material-Putty | ES | Brasseler, Savannah, GA, USA | 1 |
Endosequence BC Root Repair Material-Putty fast set | ES FS | Brasseler, Savannah, GA, USA | 1 |
Atlantik | − | Chemin du Catupolan, Vaulx en Velin, France | 1 |
Octacalcium phosphate | OCP | N/S | 1 |
PulpGuard | PG | Coltène-Whaledent, Altstätten, Switzerland | 1 |
Studies | Modified CONSORT Checklist of Items for Reporting in Vitro Studies of Dental Materials | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2a | 2b | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Liu et al. 2019 [32] | * | * | − | * | * | − | − | − | − | − | * | − | − | * | − |
Saberi et al. 2019 [33] | * | * | − | * | * | − | − | − | − | − | * | − | − | * | − |
Miller et al. 2018 [34] | * | * | − | * | * | − | − | − | − | − | * | − | * | * | − |
Hajizadeh et al. 2018 [35] | * | * | − | * | * | − | − | − | − | − | * | * | * | * | − |
Wongwatanasanti et al. 2018 [36] | * | * | − | * | * | − | − | − | − | − | * | − | − | * | − |
Sequeira et al. 2018 [37] | * | * | * | * | * | − | − | − | − | − | * | − | * | * | − |
Bi et al. 2018 [38] | * | * | − | * | * | − | − | − | − | − | * | − | − | * | − |
Peters et al. 2015 [39] | * | * | * | * | * | − | − | − | − | − | * | − | − | * | − |
Schneider et al. 2015 [40] | * | * | − | * | * | − | − | − | − | − | * | − | − | * | − |
Yan et al. 2014 [41] | * | * | * | * | * | − | − | − | − | − | * | − | − | * | − |
Author | Assay | Significant Results | Duration | Significance Level |
---|---|---|---|---|
Liu et al. 2019 [32] | Wound-healing assay | PR MTA > iRoot FS | 12 h | p < 0.05 |
24 h | p < 0.01 | |||
Control > iRoot FS | 12, 24 h | p < 0.01 | ||
Control > PR MTA | 24 h | p < 0.05 | ||
Transwell migration assay | iRoot FS > PR MTA | 24 h | p < 0.01 | |
iRoot FS > control | 24 h | p < 0.005 | ||
PR MTA > control | 24 h | p < 0.05 | ||
Saberi et al. 2019 [33] | Cell proliferation assay (trypan blue technique) | PR MTA, BD, Atlantik > control | 1 day | p < 0.05 |
Control > OCP, CEM | 3 days | p < 0.05 | ||
Flow cytometry | OCP > control | 5 days | p < 0.05 | |
Miller et al. 2018 [34] | Cell viability assay (OZblue) | ES, BD > control | 7 days | p < 0.05 |
Control > PR MTA | 7 days | p < 0.05 | ||
ES > ES FS | 7 days | p < 0.05 | ||
Wongwatanasanti et al. 2018 [36] | MTT assay | BD, PR MTA, R MTA > control | 3, 7, 14 days | p < 0.05 |
Sequeira et al. 2018 [37] | Cell viability assay (Alamar blue) | PR MTA, PG, control > BD | 24 h | p < 0.01 |
Wound-healing assay | 48, 72 h | p < 0.001 | ||
PR MTA, PG, control > BD | 24, 48 h | p < 0.05 | ||
Bi et al. 2018 [38] | CCK8 cell viability assay | iRoot FM > Ca(OH)2 * | 3 days | p < 0.01 |
5 days | p < 0.01 | |||
iRoot FM > TAP ** | 3, 5 days | p < 0.005 | ||
Peters et al. 2015 [39] | XTT cell viability assay kit | PR MTA, BD > control | 1 day | p < 0.05 |
Schneider et al. 2015 [40] | Transwell migration assay | PR MTA > control | 6 h | p < 0.05 |
WST-proliferation assay | PR MTA > control | 1, 5 day | p < 0.05 |
Author | Analysis | Significant Results | Marker/Cytokine | Duration | Significance Level |
---|---|---|---|---|---|
Liu et al. 2019 [32] | qRT-PCR | iRoot FS > PR MTA | DSPP, ALP | 6 days | p < 0.01 |
iRoot FS > control | 6 days | p < 0.005 | |||
PR MTA > control | 6 days | p < 0.01 | |||
Saberi et al. 2019 [33] | qRT-PCR | CEM, Atlantik > BD, PR MTA, OCP > control | BSP | 3 days | p < 0.05 |
BD > PR MTA, Atlantik > CEM > OCP > control | 7 days | p < 0.05 | |||
OCP > PR MTA > BD > CEM, Atlantik > control | OCN | 3 days | p < 0.05 | ||
PR MTA > OCP > BD, Atlantik > CEM > control | 7 days | p < 0.05 | |||
PR MTA, OCP > CEM > Atlantik > BD > control | OSX | 3 days | p < 0.05 | ||
PR MTA > OCP, BD > Atlantik > CEM > control | 7 days | p <0.05 | |||
Atlantik, PR MTA, CEM > BD > OCP, control | Runx2 | 3 days | p < 0.05 | ||
OCP, Atlantik, CEM > BD > PR MTA > control | Runx2, ALP | 7 days | p < 0.05 | ||
OCP > CEM, Atlantik > BD, PR MTA, control | ALP | 3 days | p < 0.05 | ||
OCP > CEM, PR MTA > BD, control > Atlantik | DSPP | 3 days | p < 0.05 | ||
PR MTA > BD, CEM > OCP > Atlantik > control | 7 days | p < 0.05 | |||
BD > PR MTA > CEM > OCP, Atlantik, control | IL-Iα | 3 days | p < 0.05 | ||
PR MTA > CEM, BD, OCP, Atlantik, control | 7 days | p < 0.05 | |||
BD > CEM > PR MTA > OCP, Atlantik, control | IL-Iβ | 3 days | p < 0.05 | ||
PR MTA > BD > CEM >OCP, Atlantik, control | 7 days | p < 0.05 | |||
Atlantik > BD > CEM, PR MTA, OCP > control | IL6 | 3 days | p < 0.05 | ||
CEM > BD, Atlantik > PR MTA, OCP > control | 7 days | p < 0.05 | |||
PR MTA > OCP, Atlantik > BD, CEM > control | TNFα | 3 days | p < 0.05 | ||
Atlantik > PR MTA, BD, OCP > CEM > control | 7 days | p < 0.05 | |||
Miller et al. 2018 [34] | qRT-PCR | ES > Es FS | ALP, DSPP | 21 days | p < 0.01 |
BD > PR MTA | ALP | 21 days | p < 0.05 | ||
DSPP | 21 days | p < 0.001 | |||
PR MTA > ES, BD, ES FS | IBSP | 21 days | p < 0.05 | ||
PR MTA, BD, ES > control | IBSP | 21 days | p < 0.05 | ||
Hajizadeh et al. 2018 [35] | qRT-PCR | CEMb > control | SP7, DSPP | 2 weeks | p < 0.05 |
PR MTA > control | ALP, SP7 | 2 weeks | p < 0.05 | ||
Control > CEMb, PR MTA | ALP, SP7 | 3 weeks | p < 0.05 | ||
Control > CEMb | DSPP, OSC | 3 weeks | p < 0.05 | ||
Wongwatanasanti et al. 2018 [36] | qRT-PCR | BD > PR MTA, R MTA | DMP-1 | 14, 21 days | p < 0.05 |
R MTA, BD > PR MTA | DSPP | 14 days | p < 0.05 | ||
BD, PR MTA > R MTA | DSPP, MEPE | 21 days | p < 0.05 | ||
PR MTA > BD | OCN | 7 days | p < 0.05 | ||
BD > PR MTA | MEPE | 14 days | p < 0.05 | ||
Bi et al. 2018 [38] | qRT-PCR | iRoot FM > control, Ca(OH)2, TAP | ALP | 10 days | p < 0.01 |
iRoot FM > control | DMP-1 | 10 days | p < 0.005 | ||
iRoot FM > Ca(OH)2, TAP | 10 days | p < 0.01 | |||
Western blot | iRoot FM > control, Ca(OH)2, TAP | ALP | 10 days | p < 0.01 | |
DMP-1 | 10 days | p < 0.005 | |||
Peters et al. 2015 [39] | ELISA | PR MTA, BD > control | VEGF | 3 days | p < 0.05 |
Control > PR MTA, BD | ANGPT-1 | 3 days | p < 0.05 | ||
qRT-PCR | PR MTA, BD > control | VEGFA, FGIF | 3 days | p < 0.05 | |
Control > PR MTA > BD | ANGPT1, FGF2 | 3 days | p < 0.05 | ||
BD > control, PR MTA | TGFβ1 | 3 days | p < 0.05 | ||
Yan et al. 2014 [41] | qRT-PCR | PR MTA > control | ALP, DSPP, RUNX2, OCN, IL-Iα. IL-Iβ, IL6 | 3, 7 days | p < 0.05 |
Author | Significant Results | Duration | Significance Level |
---|---|---|---|
Liu et al. 2019 [32] | iRoot FS > PR MTA | 4 weeks | p > 0.05 |
iRoot FS > control | 4 weeks | p < 0.01 | |
PR MTA > control | 4 weeks | p < 0.01 | |
Saberi et al. 2019 [33] | PR MTA, BD, CEM, Atlantik, OCP > control | 21 days | p < 0.05 |
Miller et al. 2018 [34] | PR MTA, BD, ES > control | 21 days | p < 0.05 |
Wongwatanasanti et al. 2018 [36] | BD > PR MTA, R MTA, control | 7, 14, 21 days | p < 0.05 |
Bi et al. 2018 [38] | iRoot FM > control, TAP | 4 weeks | p < 0.005 |
iRoot FM > Ca(OH)2 | 4 weeks | p < 0.01 | |
Yan et al. 2014 [41] | PR MTA > control | 14 days | p < 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz, J.L.; Forner, L.; Almudéver, A.; Guerrero-Gironés, J.; Llena, C. Viability and Stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) Induced by Silicate-Based Materials for Their Potential Use in Regenerative Endodontics: A Systematic Review. Materials 2020, 13, 974. https://doi.org/10.3390/ma13040974
Sanz JL, Forner L, Almudéver A, Guerrero-Gironés J, Llena C. Viability and Stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) Induced by Silicate-Based Materials for Their Potential Use in Regenerative Endodontics: A Systematic Review. Materials. 2020; 13(4):974. https://doi.org/10.3390/ma13040974
Chicago/Turabian StyleSanz, José Luis, Leopoldo Forner, Alicia Almudéver, Julia Guerrero-Gironés, and Carmen Llena. 2020. "Viability and Stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) Induced by Silicate-Based Materials for Their Potential Use in Regenerative Endodontics: A Systematic Review" Materials 13, no. 4: 974. https://doi.org/10.3390/ma13040974
APA StyleSanz, J. L., Forner, L., Almudéver, A., Guerrero-Gironés, J., & Llena, C. (2020). Viability and Stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) Induced by Silicate-Based Materials for Their Potential Use in Regenerative Endodontics: A Systematic Review. Materials, 13(4), 974. https://doi.org/10.3390/ma13040974