Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects
Abstract
:1. Introduction
2. Photo-Induced Polymerization for Surface Modification of PEEK
3. Surface Modification of PEEK via ATRP Method
4. Future Prospects and Conclusion
Abbreviations (Alphabetical Order)
AA | acrylic acid |
AEMA | 2-aminoethyl methacrylate hydrochloride |
AFM | atomic force microscopy |
BA | n-butyl acrylate |
BPY | 2,2′-bipyridine |
HA | hyaluronic acid |
MAMA | poly(MPC-co-AEMA-co-N-methacryloyl methacrylamide) |
MeHA | methacrylated hyaluronic acid |
MeOEGMA | oligo(ethylene glycol) methacrylate |
MPC | 2-methacryloyloxyethyl phosphorylcholine |
MPS | potassium 3-(methacryloyloxy) propane-1-sulfonate |
MSC | mesenchymal stem cell |
MTAC | 2-(methacryloyloxy) ethyltrimethylammonium chloride |
NIPAM | N-isopropylacrylamide |
PEEK | poly(ether ether ketone) |
PMA | poly(MPC-co-AEMA) |
PMDETA | N,N,N′,N″,N″-pentamethyldiethylenetriamine |
RDRP | reversible-deactivation radical polymerization |
SEM | scanning electron microscopy |
SI-ATRP | surface-initiated atom transfer radical polymerization |
SPMK | 3-sulfopropyl methacrylate potassium salt |
St | styrene |
TiO2 | titanium dioxide |
UV | ultraviolet |
VPA | vinylphosphonic acid |
VSA | vinylsulfonic acid sodium |
Funding
Acknowledgments
Conflicts of Interest
References
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef] [PubMed]
- He, X.H.; Deng, Y.; Yu, Y.; Lyu, H.; Liao, L. Drug-loaded/grafted peptide-modified porous PEEK to promote bone tissue repair and eliminate bacteria. Colloid Surf. B Biointerfaces 2019, 181, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shi, L.; Pei, Y.J.; Yang, D.; Gao, P.; Xiao, X.; Guo, S.; Li, M.H.; Li, X.K.; Guo, Z. Comparative effectiveness of PEEK rods versus titanium alloy rods in cervical fusion in a new sheep model. Eur. Spine J. 2020, in press. [Google Scholar] [CrossRef]
- Vaezi, M.; Yang, S.F. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 2015, 10, 123–135. [Google Scholar] [CrossRef]
- Gladson, T.S.F.; Ramesh, R.; Kavitha, C. Experimental investigation of mechanical, tribological and dielectric properties of alumina nano wire-reinforced PEEK/PTFE composites. Mater. Res. Express 2019, 6, 10. [Google Scholar]
- Graham, J.; Peck, J. PEEK Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Panayotov, I.V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016, 27, 1–11. [Google Scholar] [CrossRef]
- Almasi, D.; Iqbal, N.; Sadeghi, M.; Sudin, I.; Kadir, M.R.A.; Kamarul, T. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: A review. Int. J. Biomater. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kyomoto, M.; Moro, T.; Takatori, Y.; Kawaguchi, H.; Nakamura, K.; Ishihara, K. Self-initiated surface grafting with poly (2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Biomaterials 2010, 31, 1017–1024. [Google Scholar] [CrossRef]
- Fristrup, C.J.; Jankova, K.; Hvilsted, S. Hydrophilization of poly (ether ether ketone) films by surface-initiated atom transfer radical polymerization. Polym. Chem. 2010, 1, 1696–1701. [Google Scholar] [CrossRef]
- Riveiro, A.; Soto, R.; Comesana, R.; Boutinguiza, M.; del Val, J.; Quintero, F.; Lusquinos, F.; Pou, J. Laser surface modification of PEEK. Appl. Surf. Sci. 2012, 258, 9437–9442. [Google Scholar] [CrossRef]
- Zhao, Y.; Wong, H.M.; Wang, W.H.; Li, P.H.; Xu, Z.S.; Chong, E.Y.W.; Yan, C.H.; Yeung, K.W.K.; Chu, P.K. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 2013, 34, 9264–9277. [Google Scholar] [CrossRef] [PubMed]
- Toita, R.; Rashid, S.A.N.; Tsuru, K.; Ishikawa, K. Modulation of the osteoconductive property and immune response of poly (ether ether ketone) by modification with calcium ions. J. Mat. Chem. B 2015, 3, 8738–8746. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Dong, H.C.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. Grafting from surfaces for “Everyone”: ARGET ATRP in the presence of air. Langmuir 2007, 23, 4528–4531. [Google Scholar] [CrossRef]
- Harrisson, S.; Drisko, G.L.; Malmstrom, E.; Hult, A.; Wooley, K.L. Hybrid rigid/soft and biologic/synthetic materials: Polymers grafted onto cellulose microcrystals. Biomacromolecules 2011, 12, 1214–1223. [Google Scholar] [CrossRef]
- Henze, M.; Madge, D.; Prucker, O.; Ruhe, J. “Grafting through”: Mechanistic aspects of radical polymerization reactions with surface-attached monomers. Macromolecules 2014, 47, 2929–2937. [Google Scholar] [CrossRef]
- Hui, C.M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M.R.; Matyjaszewski, K. Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mat. 2014, 26, 745–762. [Google Scholar] [CrossRef]
- Flejszar, M.; Chmielarz, P. Surface-initiated atom transfer radical polymerization for the preparation of well-defined organic-inorganic hybrid nanomaterials. Materials 2019, 12, 3030. [Google Scholar] [CrossRef] [Green Version]
- Kyomoto, M.; Ishihara, K. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly (ether ether ketone) by photoirradiation. ACS Appl. Mater. Interfaces 2009, 1, 537–542. [Google Scholar] [CrossRef]
- Kyomoto, P.M.; Moro, M.D.P.T.; Yamane, M.S.; Watanabe, B.S.K.; Takatori, M.D.P.Y.; Tanaka, M.D.P.S.; Ishihara, P.K. Smart PEEK modified by self-initiated surface graft polymerization for orthopedic bearings. Reconstr. Rev. 2014, 4, 36–45. [Google Scholar]
- Kyomoto, M.; Moro, T.; Yamane, S.; Hashimoto, M.; Takatori, Y.; Ishihara, K. Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly (2-methacryloyloxyethyl phosphorylcholine). Biomaterials 2013, 34, 7829–7839. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Iwasaki, Y. Surface modification of poly (ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization. J. Biomater. Sci. Polym. Ed. 2014, 25, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, T.; Kyomoto, M.; Kakinoki, S.; Yamaoka, T.; Ishihara, K. Reduced platelets and bacteria adhesion on poly (ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. J. Biomed. Mater. Res. Part A 2014, 102, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Inoue, Y.; Kyomoto, M. Surface modification on poly (ether ether ketone) with phospholipid polymer via photoinduced self-initiated grafting. Macromol. Symp. 2015, 354, 230–236. [Google Scholar] [CrossRef]
- Shiojima, T.; Inoue, Y.; Kyomoto, M.; Ishihara, K. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives. Acta Biomater. 2016, 40, 38–45. [Google Scholar] [CrossRef]
- Yousaf, A.; Farrukh, A.; Oluz, Z.; Tuncel, E.; Duran, H.; Dogan, S.Y.; Tekinay, T.; Rehman, H.U.; Yameen, B. UV-light assisted single step route to functional PEEK surfaces. React. Funct. Polym. 2014, 83, 70–75. [Google Scholar] [CrossRef]
- Chouwatat, P.; Hirai, T.; Higaki, K.; Higaki, Y.; Sue, H.J.; Takahara, A. Aqueous lubrication of poly (etheretherketone) via surface-initiated polymerization of electrolyte monomers. Polymer 2017, 116, 549–555. [Google Scholar] [CrossRef]
- Zhao, X.D.; Xiong, D.S.; Wang, K.; Wang, N. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 777–783. [Google Scholar] [CrossRef]
- Liu, S.D.; Zhu, Y.T.; Gao, H.N.; Ge, P.; Ren, K.L.; Gao, J.W.; Cao, Y.P.; Han, D.; Zhang, J.H. One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 88, 70–78. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Liu, L.H.; Ma, Y.; Xiao, L.; Liu, Y. Enhanced osteoblasts responses to surface-sulfonated polyetheretherketone via a single-step ultraviolet-initiated graft polymerization. Ind. Eng. Chem. Res. 2018, 57, 10403–10410. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Y.Y.; Zhang, Q.Y.; Yu, L.; Hu, Z.L.; Liu, Y. Surface phosphonation treatment shows dose-dependent enhancement of the bioactivity of polyetheretherketone. RSC Adv. 2019, 9, 30076–30086. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Y.; Liu, L.H.; Xiao, L.; Zhang, Q.Y.; Liu, Y. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Colloid Surf. B Biointerfaces 2019, 173, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Lu, T.; Meng, F.H.; Zhu, H.Q.; Liu, X.Y. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation. Colloid Surf. B Biointerfaces 2014, 117, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Tsarevsky, N.V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533. [Google Scholar] [CrossRef]
- Pan, X.C.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490. [Google Scholar] [CrossRef]
- Zaborniak, I.; Chmielarz, P. Ultrasound-mediated atom transfer radical polymerization (ATRP). Materials 2019, 12, 3600. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Chmielarz, P.; Gennaro, A.; Matyjaszewski, K. Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. Angew. Chem. Int. Ed. 2015, 54, 2388–2392. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom transfer radical polymerization: From mechanisms to applications. Isr. J. Chem. 2012, 52, 206–220. [Google Scholar] [CrossRef]
- Zaborniak, I.; Chmielarz, P. Temporally controlled ultrasonication-mediated atom transfer radical polymerization in miniemulsion. Macromol. Chem. Phys. 2019, 220, 1900285. [Google Scholar] [CrossRef]
- Chmielarz, P. Synthesis of cationic star polymers by simplified electrochemically mediated ATRP. Express Polym. Lett. 2016, 10, 810–821. [Google Scholar] [CrossRef]
- Bussels, R.; Bergman-Gottgens, C.; Meuldijk, J.; Koning, C. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents. Polymer 2005, 46, 8546–8554. [Google Scholar] [CrossRef]
- Chmielarz, P.; Yan, J.J.; Krys, P.; Wang, Y.; Wang, Z.Y.; Bockstaller, M.R.; Matyjaszewski, K. Synthesis of nanoparticle copolymer brushes via surface-initiated seATRP. Macromolecules 2017, 50, 4151–4159. [Google Scholar] [CrossRef]
- Chmielarz, P.; Sobkowiak, A. Ultralow ppm seATRP synthesis of PEO-b-PBA copolymers. J. Polym. Res. 2017, 24, 77. [Google Scholar] [CrossRef]
- Chmielarz, P. Synthesis of multiarm star block copolymers via simplified electrochemically mediated ATRP. Chem. Pap. 2017, 71, 161–170. [Google Scholar] [CrossRef]
- Turan, E.; Caykara, T. Construction of hydroxyl-terminated poly(N-isopropylacrylamide) brushes on silicon wafer via surface-initiated atom transfer radical polymerization. J. Polym. Sci. Pol. Chem. 2010, 48, 3880–3887. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.M.; Wang, L.; Shi, X.J.; Ya, J.X.; Song, B.; Chen, H. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity. Langmuir 2013, 29, 1122–1128. [Google Scholar] [CrossRef]
- Khabibullin, A.; Mastan, E.; Matyjaszewski, K.; Zhu, S.P. Surface-initiated atom transfer radical polymerization. In Controlled Radical Polymerization at and from Solid Surfaces; Vana, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 270, pp. 29–76. [Google Scholar]
- Chmielarz, P.; Krys, P.; Wang, Z.Y.; Wang, Y.; Matyjaszewski, K. Synthesis of well-defined polymer brushes from silicon wafers via surface-initiated seATRP. Macromol. Chem. Phys. 2017, 218, 1700106. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, J.X.; Feng, X.T.; Liu, D.Y. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. J. Biomater. Sci. Polym. Ed. 2017, 28, 2101–2116. [Google Scholar] [CrossRef]
- Ejaz, M.; Tsujii, Y.; Fukuda, T. Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer 2001, 42, 6811–6815. [Google Scholar] [CrossRef]
- Chen, M.; Briscoe, W.H.; Armes, S.P.; Cohen, H.; Klein, J. Robust, biomimetic polymer brush layers grown directly from a planar mica surface. Chem. Phys. Chem. 2007, 8, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Maclaughlin, S.; Zhu, S.P. Surface modification of active metals through atom transfer radical polymerization grafting of acrylics. Appl. Surf. Sci. 2008, 254, 6802–6809. [Google Scholar] [CrossRef]
- Cheesman, B.T.; Smith, E.G.; Murdoch, T.J.; Guibert, C.; Webber, G.B.; Edmondson, S.; Wanless, E.J. Polyelectrolyte brush pH-response at the silica-aqueous solution interface: A kinetic and equilibrium investigation. Phys. Chem. Chem. Phys. 2013, 15, 14502–14510. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.H.; Zhang, Y.W.; Shen, Y.B.; Zhang, Y.T.; Zhang, H.Q.; Liu, J.D. Hydrophilic modification of microporous polysulfone membrane via surface-initiated atom transfer radical polymerization of acrylamide. Appl. Surf. Sci. 2010, 256, 3274–3280. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.G.; Ye, G.; Zhu, S.; Wang, Z.; Huo, X.M.; Matyjaszewski, K.; Lu, Y.X.; Chen, J. Metal-free photoinduced electron transfer-atom transfer radical polymerization integrated with bioinspired polydopamine chemistry as a green strategy for surface engineering of magnetic nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 13637–13646. [Google Scholar] [CrossRef] [PubMed]
- Yameen, B.; Alvarez, M.; Azzaroni, O.; Jonas, U.; Knoll, W. Tailoring of poly (ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization. Langmuir 2009, 25, 6214–6220. [Google Scholar] [CrossRef] [PubMed]
- Yameen, B.; Khan, H.U.; Knoll, W.; Forch, R.; Jonas, U. Surface initiated polymerization on pulsed plasma deposited polyallylamine: A polymer substrate-independent strategy to soft surfaces with polymer brushes. Macromol. Rapid Commun. 2011, 32, 1735–1740. [Google Scholar] [CrossRef]
- Langer, R.; Tirrell, D.A. Designing materials for biology and medicine. Nature 2004, 428, 487–492. [Google Scholar] [CrossRef]
- Elsen, A.M.; Burdynska, J.; Park, S.; Matyjaszewski, K. Active ligand for low ppm miniemulsion atom transfer radical polymerization. Macromolecules 2012, 45, 7356–7363. [Google Scholar] [CrossRef]
- Chmielarz, P. Synthesis of inositol-based star polymers through low ppm ATRP methods. Polym. Adv. Technol. 2017, 28, 1804–1812. [Google Scholar] [CrossRef]
- Chmielarz, P. Synthesis of pyridoxine-based eagle-shaped asymmetric star polymers through seATRP. Polym. Adv. Technol. 2017, 28, 1787–1793. [Google Scholar] [CrossRef]
- Wang, Y.; Fantin, M.; Matyjaszewski, K. Synergy between electrochemical ATRP and RAFT for polymerization at low copper loading. Macromol. Rapid Commun. 2018, 39, 1–5. [Google Scholar] [CrossRef]
- Chmielarz, P.; Sobkowiak, A.; Matyjaszewski, K. A simplified electrochemically mediated ATRP synthesis of PEO-b-PMMA copolymers. Polymer 2015, 77, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Fantin, M.; Lorandi, F.; Isse, A.A.; Gennaro, A. Sustainable electrochemically-mediated atom transfer radical polymerization with inexpensive non-platinum electrodes. Macromol. Rapid Commun. 2016, 37, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Chmielarz, P.; Paczesniak, T.; Rydel-Ciszek, K.; Zaborniak, I.; Biedka, P.; Sobkowiak, A. Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP. Beilstein J. Org. Chem. 2017, 13, 2466–2472. [Google Scholar] [CrossRef] [Green Version]
- Chmielarz, P.; Fantin, M.; Park, S.; Isse, A.A.; Gennaro, A.; Magenau, A.J.D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78. [Google Scholar] [CrossRef]
- Sun, Y.; Lathwal, S.; Wang, Y.; Fu, L.Y.; Olszewski, M.; Fantin, M.; Enciso, A.E.; Szczepaniak, G.; Das, S.; Matyjaszewski, K. Preparation of well-defined polymers and DNA-polymer bioconjugates via small-volume eATRP in the presence of air. ACS Macro Lett. 2019, 8, 603–609. [Google Scholar] [CrossRef]
- Guo, J.K.; Zhou, Y.N.; Luo, Z.H. Electrochemically mediated ATRP process intensified by ionic liquid: A “flash” polymerization of methyl acrylate. Chem. Eng. J. 2019, 372, 163–170. [Google Scholar] [CrossRef]
- Pan, X.; Malhotra, N.; Simakova, A.; Wang, Z.; Konkolewicz, D.; Matyjaszewski, K. Photoinduced atom transfer radical polymerization with ppm-level Cu catalyst by visible light in aqueous media. J. Am. Chem. Soc. 2015, 137, 15430–15433. [Google Scholar] [CrossRef]
- Aydogan, C.; Yilmaz, G.; Yagci, Y. Synthesis of hyperbranched polymers by photoinduced metal-free ATRP. Macromolecules 2017, 50, 9115–9120. [Google Scholar] [CrossRef]
- Wang, Y.; Dadashi-Silab, S.; Matyjaszewski, K. Photoinduced miniemulsion atom transfer radical polymerization. ACS Macro Lett. 2018, 7, 720–725. [Google Scholar] [CrossRef]
- Vasu, V.; Kim, J.S.; Yu, H.S.; Bannerman, W.I.; Johnson, M.E.; Asandei, A.D. Normal, ICAR and photomediated butadiene-ATRP with iron complexes. Polym. Chem. 2018, 9, 2389–2406. [Google Scholar] [CrossRef]
- Wang, Z.H.; Pan, X.C.; Li, L.C.; Fantin, M.; Yan, J.J.; Wang, Z.Y.; Wang, Z.H.; Xia, H.S.; Matyjaszewski, K. Enhancing mechanically induced ATRP by promoting interfacial electron transfer from piezoelectric nanoparticles to Cu catalysts. Macromolecules 2017, 50, 7940–7948. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, X.; Yan, J.; Dadashi-Silab, S.; Xie, G.; Zhang, J.; Wang, Z.; Xia, H.; Matyjaszewski, K. Temporal control in mechanically controlled atom transfer radical polymerization using low ppm of Cu catalyst. ACS Macro Lett. 2017, 6, 546–549. [Google Scholar] [CrossRef]
- Mohapatra, H.; Kleiman, M.; Esser-Kahn, A.P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 2017, 9, 135–139. [Google Scholar] [CrossRef]
- Cheng, Z.P.; Zhu, X.L.; Zhou, N.C.; Zhu, J.; Zhang, Z.B. Atom transfer radical polymerization of styrene under pulsed microwave irradiation. Radiat. Phys. Chem. 2005, 72, 695–701. [Google Scholar] [CrossRef]
- Xie, Z.K.; Guo, J.K.; Luo, Z.H. Assessment of microwave effect on polymerization conducted under ARGET ATRP conditions. Macromol. React. Eng. 2018, 12, 1700032. [Google Scholar] [CrossRef]
- Fantin, M.; Chmielarz, P.; Wang, Y.; Lorandi, F.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Harnessing the interaction between surfactant and hydrophilic catalyst to control eATRP in miniemulsion. Macromolecules 2017, 50, 3726–3732. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, Z.H.; Pan, X.C.; Fu, L.Y.; Lathwal, S.; Olszewski, M.; Yan, J.J.; Enciso, A.E.; Wang, Z.Y.; Xia, H.S.; et al. Ultrasonication-induced aqueous atom transfer radical polymerization. ACS Macro Lett. 2018, 7, 275–280. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Magenau, A.J.D.; Averick, S.E.; Simakova, A.; He, H.K.; Matyjaszewski, K. ICAR ATRP with ppm Cu catalyst in water. Macromolecules 2012, 45, 4461–4468. [Google Scholar] [CrossRef]
- Wang, G.W.; Wang, Z.Y.; Lee, B.; Yuan, R.; Lu, Z.; Yan, J.J.; Pan, X.C.; Song, Y.; Bockstaller, M.R.; Matyjaszewski, K. Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP. Polymer 2017, 129, 57–67. [Google Scholar] [CrossRef]
- Wang, Y.; Lorandi, F.; Fantin, M.; Chmielarz, P.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Miniemulsion ARGET ATRP via interfacial and ion-pair catalysis: From ppm to ppb of residual copper. Macromolecules 2017, 50, 8417–8425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.S.; Tam, K.C.; Sebe, G. A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP. Carbohydr. Polym. 2019, 205, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Navarro, L.A.; Enciso, A.E.; Matyjaszewski, K.; Zauscher, S. Enzymatically degassed surface-initiated atom transfer radical polymerization with real-time monitoring. J. Am. Chem. Soc. 2019, 141, 3100–3109. [Google Scholar] [CrossRef] [PubMed]
- Konkolewicz, D.; Wang, Y.; Zhong, M.J.; Krys, P.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 2013, 46, 8749–8772. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Wang, Y.; Krys, P.; Zhong, M.J.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 2014, 5, 4396–4417. [Google Scholar] [CrossRef]
- Chmielarz, P.; Krys, P.; Park, S.; Matyjaszewski, K. PEO-b-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. Polymer 2015, 71, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S.R.; Mendonca, P.V.; Serra, A.C.; Coelho, J.F.J. Self-degassing SARA ATRP mediated by Na2S2O4 with no external additives. J. Polym. Sci. Pol. Chem. 2020, 58, 145–153. [Google Scholar]
- Król, P.; Chmielarz, P. Synthesis of PMMA-b-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air. Express Polym. Lett. 2013, 7, 249–260. [Google Scholar] [CrossRef]
- Kang, H.; Jeong, W.; Hong, D. Antifouling surface coating using droplet-based SI-ARGET ATRP of carboxybetaine under open-air conditions. Langmuir 2019, 35, 7744–7750. [Google Scholar] [CrossRef]
- Assaf, C.E.; De Clercq, N.; Van Poucke, C.; Vlaemynck, G.; Van Coillie, E.; Van Pamel, E. Effects of ascorbic acid on patulin in aqueous solution and in cloudy apple juice. Mycotoxin Res. 2019, 35, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Discekici, E.H.; Anastasaki, A.; de Alaniz, J.R.; Hawker, C.J. Evolution and future directions of metal-free atom transfer radical polymerization. Macromolecules 2018, 51, 7421–7434. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.R.; Jian, L.H.; Liu, R.Q.; Yang, H.X.; Kong, J.M.; Zhang, X.J. Metal-free photoinduced atom transfer radical polymerization for highly sensitive detection of lung cancer DNA. Chem. Eur. J. 2020, 26, 1633–1639. [Google Scholar] [CrossRef] [PubMed]
Monomer | Solvent | T 1 (°C) | Time (min) | Wavelength (nm) | Light Intensity (mW/cm2) | Reference |
---|---|---|---|---|---|---|
MPC | H2O | 60 | 5–90 | 350 ± 50 | 5 | [10,20,21,22] 2 |
MPC | 1-butanol | NIA 3 | NIA | 350 ± 50 | 1 | [23] |
MPC | H2O | 25–60 | 90 | 350 ± 50 | 1.5–9 | [24] |
MPC | H2O | 60 | 90 | NIA | 2.5–10 | [25] |
MPC | H2O | 60 | 5–90 | 350 ± 50 | 20 | [26] |
St | NIA | rt 4 | 270 | 315–400 | NIA | [27] |
AA | NIA | rt | 270 | 315–400 | NIA | [27] |
MeOEGMA | NIA | rt | 270 | 315–400 | NIA | [27] |
VPA | NIA | rt | 270 | 315–400 | NIA | [27] |
BA | NIA | rt | 270 | 315–400 | NIA | [27] |
MTAC | H2O | rt | 5–90 | 365 | 5 | [28] |
SPMK | H2O | rt | 5–90 | 365 | 5 | [28] |
AA | H2O | NIA | 30, 45, 60, 90 | 350 ± 50 | NIA | [29] |
MeHA | NIA | NIA | 0.5, 1, 1.5, 2, 4 | NIA | 5 | [30] |
VSA | H2O | rt | 40 | 365 | NIA | [31] |
VPA | H2O | rt | 20, 50, 90 | 365 | NIA | [32] |
VPA | H2O | rt | 40 | 365 | NIA | [33] |
Initiator | Monomer | Catalyst Complex | Solvent | T (°C) | Catalyst Concentration | Reference | |
---|---|---|---|---|---|---|---|
ppm (Catalyst/Monomer) | ppm (by Weight) | ||||||
2-BiBr | MPS | CuIICl2/BPY | MeOH/H2O | rt 1 | 25,071 | 3533 | [58] |
2-BiBr | MeOEGMA | CuIIBr2/BPY | H2O | 30 | 2270 | 2251 | [58,59] 2 |
2-BiBr | NIPAM | CuIIBr2/PMDETA | MeOH/H2O | rt | 10,000 | 2753 | [58] |
2-BiBr | PEGMA | CuIICl2/BPY | H2O | 30 | 56,977 | 6130 | [11] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flejszar, M.; Chmielarz, P. Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects. Materials 2020, 13, 999. https://doi.org/10.3390/ma13040999
Flejszar M, Chmielarz P. Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects. Materials. 2020; 13(4):999. https://doi.org/10.3390/ma13040999
Chicago/Turabian StyleFlejszar, Monika, and Paweł Chmielarz. 2020. "Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects" Materials 13, no. 4: 999. https://doi.org/10.3390/ma13040999
APA StyleFlejszar, M., & Chmielarz, P. (2020). Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods—Current Status and Future Prospects. Materials, 13(4), 999. https://doi.org/10.3390/ma13040999