Study of Si and Ge Atoms Termination Using H-Dilution in SiGe:H Alloys Deposited by Radio Frequency (13.56 MHz) Plasma Discharge at Low Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Film Growth
3.2. Composition of the Films
3.3. H-Termination of Si and Ge Atoms
4. Discussion
4.1. Incorporation of Si, Ge in RF Versus LF PECVD
4.2. Reduction of Vd and Preferential Solid Incorporation of Ge Atoms
4.3. Preferential Ge–H Termination
5. Conclusions
- (1)
- Dilution by hydrogen decreases the deposition rate due to factors such as the dilution of silicon and germanium precursors, etching of the silicon atoms, and reduction of the reactivity of the surface.
- (2)
- For all films, preferential incorporation of Ge atoms (PGe) is observed. This may be associated with the lower binding energy of Ge–H (2.97 eV/bond) than that of Si–H (3.2 eV/bond) which results in more germanium precursors in the plasma. The lower preferential incorporation coefficient of silicon atoms can be explained by the preferential etching of silicon atoms due to an increase of hydrogen radicals.
- (3)
- Hydrogen preferentially terminates Ge atoms with an increase of the hydrogen dilution as a consequence of an increase of Ge atoms in the solid phase on the surface and an increase of surface energy provided by the hydrogen radicals.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Sample | K [cm−1] | W [cm−1] | S [cm−2] | Bonding (cm−1) Ref. [23] |
---|---|---|---|---|
RH = 09 | 608.2 ± 0.5 | 111 ± 1 | (1.50 ± 0.03) × 105 | Ge–H (570) and Si–H (630) bending |
1883.2 ± 0.9 | 81 ± 3 | (1.9 ± 0.1) × 104 | Ge–H (1880) stretching | |
2015 ± 1 | 101 ± 3 | (4.6 ± 0.2) × 104 | Si–H (2000) stretching | |
2098 ± 2 | 69 ± 4 | (1.5 ± 0.2) × 104 | SiH2 (2090–2140) stretching | |
RH = 20 | 570 ± 5 | 73 ± 6 | (4.9 ± 0.8) × 104 | Ge–H (570) bending |
616 ± 1 | 47 ± 5 | (3.5 ± 0.9) × 104 | Si–H (630) bending | |
664 ± 1 | 41 ± 1 | (3.1 ± 0.2) × 104 | Si–H2 (670) wagging or Si–C stretching | |
1883.2 ± 0.8 | 86 ± 4 | (2.5 ± 0.2) × 104 | Ge–H (1880) stretching | |
2013 ± 3 | 77 ± 4 | (2.9 ± 0.2) × 104 | Si–H (2000) stretching | |
2089 ± 6 | 85 ± 13 | (1.5 ± 0.4) × 104 | SiH2 (2090–2140) stretching | |
RH = 30 | 559 ± 1 | 40 ± 2 | (1.9 ± 0.3) × 104 | Ge–H (570) bending |
608.2 ± 0.9 | 61 ± 5 | (5.3 ± 0.4) × 104 | Ge–H (570) and Si–H (630) bending | |
666.9 ± 0.8 | 45 ± 1 | (3.8 ± 0.2) × 104 | Si–H2 (670) wagging or Si–C stretching | |
1878 ± 2 | 65 ± 3 | (3.9 ± 0.3) × 104 | Ge–H (1880) stretching | |
2015 ± 1 | 67 ± 5 | (3.9 ± 0.5) × 104 | Si–H (2000) stretching | |
2093 ± 5 | 93 ± 8 | (2.8 ± 0.3) × 104 | SiH2 (2090–2140) stretching or SiH–O | |
RH = 40 | 571 ± 5 | 68 ± 5 | (4.7 ± 0.9) × 104 | Ge–H (570) bending |
618 ± 2 | 54 ± 6 | (4 ± 1) × 104 | Ge–H (570) and Si–H (630) bending | |
1873 ± 2 | 69 ± 7 | (4.5 ± 0.8) × 104 | Ge–H (1880) stretching | |
2008 ± 1 | 64 ± 3 | (4.4 ± 0.4) × 104 | Si–H (2000) stretching | |
2096 ± 2 | 91 ± 8 | (3.8 ± 0.6) × 104 | SiH2 (2090–2140) stretching or SiH–O | |
RH = 50 | 579.2 ± 0.5 | 71 ± 1 | (4.5 ± 0.1973) × 104 | Ge–H (570) bending |
667.3 ± 0.3 | 53.2 ± 0.9 | (5.6 ± 0.1) × 104 | Si–H2 (670) wagging or Si–C | |
1876.0 ± 0.2 | 18.2 ± 0.5 | (5.0 ± 0.2) × 103 | Ge–H (1880) stretching | |
2002.1 ± 0.3 | 22.0 ± 0.8 | (3.5 ± 0.1) × 103 | Si–H (2000) stretching | |
2030.2 ± 0.7 | 23 ± 1 | (1.8 ± 0.1) × 103 | GeH3 (2050–2060) stretching | |
RH = 60 | 578.1 ± 0.9 | 92 ± 3 | (3.0 ± 0.2) × 104 | Ge–H (570) bending |
1875.2 ± 0.5 | 38 ± 1 | (1.45 ± 0.05) × 104 | Ge–H (1880) stretching | |
2009 ± 1 | 33 ± 2 | (5.7 ± 0.6) × 103 | Si–H (2000) stretching | |
2031.9 ± 0.7 | 17 ± 1 | (1.7 ± 0.3) × 103 | GeH3 (2050–2060) stretching | |
2066.1 ± 0.6 | 23 ± 2 | (1.5 ± 0.2) × 103 | GeH3 (2050–2060) stretching | |
SiGe:H RH = 70 | 565.5 ± 0.9 | 43 ± 1 | (2.8 ± 0.1) × 104 | Ge–H (570) bending |
611.8 ± 0.5 | 40 ± 1 | (3.4 ± 0.1) × 104 | Si–H (630) bending | |
667.6 ± 0.2 | 43.6 ± 0.6 | (6.3 ± 0.1) × 104 | Si–H2 (670) wagging or Si–C stretching | |
1877.6 ± 0.4 | 34 ± 2 | (1.9 ± 0.1) × 104 | Ge–H (1880) stretching | |
2032.6 ± 0.5 | 55 ± 1 | (1.78 ± 0.09) × 104 | Si–H y GeH3Stretching | |
2130.3 ± 0.7 | 72 ± 2 | (2.2 ± 0.1) × 104 | SiH3 (2120–2140)Bending | |
2178 ± 1 | 15 ± 3 | (1.0 ± 0.2) × 103 | SiH-O2 (2160) cluster | |
SiGe:H RH = 75 | 559 ± 1 | 46 ± 3 | (3.1 ± 0.2) × 104 | Ge–H (570) bending |
610 ± 0.8 | 44 ± 2 | (4.0 ± 0.2) × 104 | Si–H (630) bending | |
666 ± 0.4 | 41 ± 1 | (4.9 ± 0.1) × 104 | Si–H2 (670) wagging or Si–C stretching | |
1879 ± 0.3 | 41.1 ± 0.9 | (2.17 ± 0.05) × 104 | Ge–H (1880) stretching | |
2002.1 ± 0.6 | 23 ± 1 | (4.8 ± 0.4) × 103 | Si–H (2000) stretching | |
2036.9 ± 0.5 | 33 ± 1 | (9.2 ± 0.5) × 103 | GeH3 (2050–2060) stretching | |
2089 ± 1 | 39 ± 5 | (4.0 ± 0.7) × 103 | SiH2 (2090–2140) stretching | |
2143 ± 1 | 42 ± 6 | (5.7 ± 0.8) × 103 | SiH3 (2120−2140)Bending | |
2179 ± 1 | 20 ± 3 | (2.0 ± 0.5) × 103 | SiH–O2 (2160) cluster | |
SiGe:H RH = 80 | 560.9 ± 0.4 | 42 ± 1 | (2.9 ± 0.1) × 104 | Ge–H (570) bending |
611.4 ± 0.3 | 40.3 ± 0.9 | (3.8 ± 0.1) × 104 | Si–H (630) bending | |
667.4 ± 0.3 | 36 ± 1 | (1.8 ± 1.2) × 104 | Si–H2 (670) wagging or Si–C stretching | |
1880.4 ± 0.4 | 41 ± 1 | (1.61 ± 0.04) × 104 | Ge–H (1880) stretching | |
2000.2 ± 0.9 | 25 ± 2 | (4.1 ± 0.8) × 103 | Si–H (2000) stretching | |
2037.7 ± 0.7 | 36 ± 3 | (8.7 ± 0.7) × 103 | GeH3 (2050–2060) stretching | |
2079 ± 1 | 26 ± 3 | (3.1 ± 0.7) × 103 | SiH2 (2090–2140) stretching |
References
- Park, J.; Dao, V.A.; Kim, S.; Pham, D.P.; Kim, S.; Le, A.H.T.; Kang, J.; Yi, J. High Efficiency Inorganic/Inorganic Amorphous Silicon/Heterojunction Silicon Tandem Solar Cells. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ţălu, S. Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications, 2015th ed.; Napoca Star Publishing House: Cluj-Napoca, Romania, 2015. [Google Scholar]
- Yu, Z.; Zhang, X.; Zhang, H.; Huang, Y.; Li, Y.; Zhang, X.; Gan, Z. Improved power conversion efficiency in radial junction thin film solar cells based on amorphous silicon germanium alloys. J. Alloys Compd. 2019, 803, 260–264. [Google Scholar] [CrossRef]
- Ji, X.; Cheng, H.Y.; Grede, A.J.; Molina, A.; Talreja, D.; Mohney, S.E.; Giebink, N.C.; Badding, J.V.; Gopalan, V. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics. APL Mater. 2018, 6, 046105. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, R.; Moreno, M.; Torres, A.; Rosales, P.; Sanz, M.T.; Ambrosio, R. Performance Characterization of Infrared Detectors Based on Polymorphous Silicon-Germanium (pm-Si x Ge 1−x:H) Thin Films Deposited at Low Temperature. Phys. Status Solidi 2018, 215, 1700736. [Google Scholar] [CrossRef]
- Wang, Q.; Vogt, H. With PECVD Deposited Poly-SiGe and Poly-Ge Forming Contacts Between MEMS and Electronics. J. Electron. Mater. 2019, 48, 7360–7365. [Google Scholar] [CrossRef]
- Huerta, F.L.; García, R.M.W.; González, L.G.; May, A.L.H.; Arriaga, W.C.; Vega, R.; Soto, E. Biocompatibility and surface properties of hydrogenated amorphous silicon-germanium thin films prepared by LF-PECVD. IOP Conf. Ser. Mater. Sci. Eng. 2019, 628, 012003. [Google Scholar] [CrossRef]
- Shima, M.; Isomura, M.; Maruyama, E.; Okamoto, S.; Haku, H.; Wakisaka, K.; Kiyama, S.; Tsuda, S. Investigation of hydrogenated amorphous silicon germanium fabricated under high hydrogen dilution and low deposition temperature conditions for stable solar cells. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1998, 37, 6322–6327. [Google Scholar] [CrossRef]
- Kosarev, A.; Torres, A.; Hernandez, Y.; Ambrosio, R.; Zuniga, C.; Felter, T.E.; Asomoza, R.; Kudriavtsev, Y.; Silva-Gonzalez, R.; Gomez-Barojas, E.; et al. Abramov, Silicon-germanium films deposited by low-frequency plasma-enhanced chemical vapor deposition: Effect of H 2 and Ar dilution. J. Mater. Res. 2006, 21, 88–104. [Google Scholar] [CrossRef]
- Shima, M.; Terakawa, A.; Isomura, M.; Haku, H.; Tanaka, M.; Wakisaka, K.; Kiyama, S.; Tsuda, S. Effects of very high hydrogen dilution at low temperature on hydrogenated amorphous silicon germanium. J. Non Cryst. Solids 1998, 227, 442–446. [Google Scholar] [CrossRef]
- MacKenzie, K.D.; Eggert, J.R.; Leopold, D.J.; Li, Y.M.; Lin, S.; Paul, W. Structural, electrical, and optical properties of a-Si1-xGex:H and an inferred electronic band structure. Phys. Rev. B 1985, 31, 2198–2212. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dalal, V.L. Properties of amorphous silicon-germanium films and devices deposited at higher growth rates. MRS Proc. 2002, 715, A18.3. [Google Scholar] [CrossRef]
- Wickboldt, P.; Pang, D.; Paul, W.; Chen, J.H.; Zhong, F.; Chen, C.-C.; Cohen, J.D.; Williamson, D.L. High performance glow discharge a-Si1−xGex:H of large x. J. Appl. Phys. 1997, 81, 6252–6267. [Google Scholar] [CrossRef]
- Sahli, F.; Werner, J.; Kamino, B.A.; Bräuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Leon, J.J.D.; Sacchetto, D.; et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018, 17, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Cosme, I.; Kosarev, A.; Mansurova, S.; Olivares, A.J.; Martinez, H.E.; Itzmoyotl, A. Hybrid photovoltaic structures based on amorphous silicon and P3HT: PCBM/PEDOT:PSS polymer semiconductors. Org. Electron. Phys. Mater. Appl. 2016, 38, 271–277. [Google Scholar] [CrossRef]
- Madaka, R.; Kanneboina, V.; Agarwal, P. Low-Temperature Growth of Amorphous Silicon Films and Direct Fabrication of Solar Cells on Flexible Polyimide and Photo-Paper Substrates. J. Electron. Mater. 2018, 47, 4710–4720. [Google Scholar] [CrossRef]
- Mansurova, S.; Cosme, I.; Kosarev, A.; Olivares, A.J.; Ospina, C.; Martinez, H.E. AZO/PEDOT: PSS Polymer Frontal Interface Deposited on Flexible Substrates for a-Si:H Photovoltaic Applications. Polymers 2018, 10, 1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutzmann, M.; Street, R.A.; Tsai, C.C.; Boyce, J.B.; Ready, S.E. Structural, optical, and spin properties of hydrogenated amorphous silicon-germanium alloys. J. Appl. Phys. 1989, 66, 569–592. [Google Scholar] [CrossRef]
- Chou, Y.-P.; Lee, S.-C. Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys. J. Appl. Phys. 1998, 83, 4111–4123. [Google Scholar] [CrossRef]
- Shah, A.V. Thin-Film Silicon Solar Cells, 1st ed.; EPFL Press: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Martirosyan, V. Atomistic Simulations of H2 and He Plasmas Modification of Thin-Films Materials for Advanced Etch., Université Grenoble Alpes. Available online: https://tel.archives-ouvertes.fr/tel01803013/document (accessed on 15 January 2020).
- Kim, S.; Park, C.; Lee, J.-C.; Cho, J.-S.; Kim, Y. Preferential etching of Si–Si bond in the microcrystalline silicon germanium. Curr. Appl. Phys. 2013, 13, 457–460. [Google Scholar] [CrossRef]
- Collins, R.W. Hydrogenated amorphous silicon alloy deposition processes. J. Non Cryst. Solids 1994, 170, 210–213. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosme, I.; Kosarev, A.; Zarate-Galvez, S.; Martinez, H.E.; Mansurova, S.; Kudriavtsev, Y. Study of Si and Ge Atoms Termination Using H-Dilution in SiGe:H Alloys Deposited by Radio Frequency (13.56 MHz) Plasma Discharge at Low Temperature. Materials 2020, 13, 1045. https://doi.org/10.3390/ma13051045
Cosme I, Kosarev A, Zarate-Galvez S, Martinez HE, Mansurova S, Kudriavtsev Y. Study of Si and Ge Atoms Termination Using H-Dilution in SiGe:H Alloys Deposited by Radio Frequency (13.56 MHz) Plasma Discharge at Low Temperature. Materials. 2020; 13(5):1045. https://doi.org/10.3390/ma13051045
Chicago/Turabian StyleCosme, Ismael, Andrey Kosarev, Saraí Zarate-Galvez, Hiram E. Martinez, Svetlana Mansurova, and Yuri Kudriavtsev. 2020. "Study of Si and Ge Atoms Termination Using H-Dilution in SiGe:H Alloys Deposited by Radio Frequency (13.56 MHz) Plasma Discharge at Low Temperature" Materials 13, no. 5: 1045. https://doi.org/10.3390/ma13051045
APA StyleCosme, I., Kosarev, A., Zarate-Galvez, S., Martinez, H. E., Mansurova, S., & Kudriavtsev, Y. (2020). Study of Si and Ge Atoms Termination Using H-Dilution in SiGe:H Alloys Deposited by Radio Frequency (13.56 MHz) Plasma Discharge at Low Temperature. Materials, 13(5), 1045. https://doi.org/10.3390/ma13051045