Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Synthesis of Diethyl Pyridine-2,6-Dicarboxylate
3.2. Synthesis of Bis(3-(Triethoxysilyl)Propyl)Pyridine-2,6-Dicarboxamide
3.3. Synthesis of PMO Materials Bearing Pyridinedicarboxamide (PMO-Py)
3.4. Material Characterisation
3.5. Knoevenagel Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vinu, A.; Hossain, K.Z.; Ariga, K. Recent Advances in Functionalization of Mesoporous Silica. J. Nanosci. Nanotechnol. 2005, 5, 347–371. [Google Scholar] [CrossRef]
- Wang, X.; Lin, K.S.K.; Chan, J.C.C.; Cheng, S. Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. J. Phys. Chem. B 2005, 109, 1763–1769. [Google Scholar] [CrossRef]
- Campelo, J.M.; Luna, D.; Luque, R.; Marinas, J.M.; Romero, A.A. Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem 2009, 2, 18–45. [Google Scholar] [CrossRef]
- Pineda, A.; Balu, A.M.; Campelo, J.M.; Romero, A.A.; Carmona, D.; Balas, F.; Santamaria, J.; Luque, R. A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem 2011, 4, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. J. Am. Chem. Soc. 1999, 121, 9611–9614. [Google Scholar] [CrossRef]
- Melde, B.J.; Holland, B.T.; Blanford, C.F.; Stein, A. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chem. Mater. 1999, 11, 3302–3308. [Google Scholar] [CrossRef]
- Asefa, T.; MacLachlan, M.J.; Coombs, N.; Ozin, G.A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402, 867. [Google Scholar] [CrossRef]
- Corma, A.; Das, D.; Garcia, H.; Leyva, A. A periodic mesoporous organosilica containing a carbapalladacycle complex as heterogeneous catalyst for Suzuki cross-coupling. J. Catal. 2005, 229, 322–331. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.Q.; Kleitz, F.; Chen, Z.G.; Yang, T.Y.; Strounina, E.; Lu, G.Q.; Qiao, S.Z. Yolk-Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. Adv. Funct. Mater. 2012, 22, 591–599. [Google Scholar] [CrossRef]
- Liu, X.; Maegawa, Y.; Goto, Y.; Hara, K.; Inagaki, S. Heterogeneous Catalysis for Water Oxidation by an Iridium Complex Immobilized on Bipyridine-Periodic Mesoporous Organosilica. Angew. Chem. Int. Ed. 2016, 55, 7943–7947. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.; Lee, N.; Kim, J.; Cho, E.B.; Gunathilake, C.; Jaroniec, M. CO2 Adsorption on Amine-Functionalized Periodic Mesoporous Benzenesilicas. ACS Appl. Mater. Interfaces 2015, 7, 6792–6802. [Google Scholar] [CrossRef] [PubMed]
- De Canck, E.; Ascoop, I.; Sayari, A.; Van Der Voort, P. Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Phys. Chem. Chem. Phys. 2013, 15, 9792–9799. [Google Scholar] [CrossRef] [PubMed]
- White, B.J.; Zeinali, M. Photo-decontamination catalyst, useful for e.g., sample containing trinitrotoluene, comprises optically active molecule incorporated into periodic mesoporous organosilica. U.S. Patent US2007073095-A1, 29 March 2007. [Google Scholar]
- Mizoshita, N.; Goto, Y.; Kapoor, M.P.; Shimada, T.; Tani, T.; Inagaki, S. Fluorescence Emission from 2,6-Naphthylene-Bridged Mesoporous Organosilicas with an Amorphous or Crystal-Like Framework. Chem. Eur. J. 2009, 15, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Mizoshita, N.; Ikai, M.; Tani, T.; Inagaki, S. Hole-Transporting Periodic Mesostructured Organosilica. J. Am. Chem. Soc. 2009, 131, 14225–14227. [Google Scholar] [CrossRef]
- Teng, Z.; Zhang, J.; Li, W.; Zheng, Y.; Su, X.; Tang, Y.; Dang, M.; Tian, Y.; Yuwen, L.; Weng, L.; et al. Facile Synthesis of Yolk–Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine. Small 2016, 12, 3550–3558. [Google Scholar] [CrossRef]
- Liu, M.S.; Lu, X.Y.; Shi, L.; Wang, F.X.; Sun, J.M. Periodic Mesoporous Organosilica with a Basic Urea-Derived Framework for Enhanced Carbon Dioxide Capture and Conversion Under Mild Conditions. ChemSusChem 2017, 6, 1010–1119. [Google Scholar] [CrossRef]
- Zhu, F.; Yang, D.; Zhang, F. Amine-bridged periodic mesoporous organosilica nanospheres as an active and reusable solid base-catalyst for water-medium and solvent-free organic reactions. J. Mol. Catal. A 2012, 363-364, 387–397. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Zhang, Z.; Zhu, F.; Zhao, P.; Li, G.; Shao, F.; Rui, J. Imine-bridged periodic mesoporous organosilica as stable high-activity catalytic for Knoevenagel reaction in aqueous medium. Res. Chem. Intermed. 2019, 45, 3107–3121. [Google Scholar] [CrossRef]
- Yoshina-Ishiii, C.; Asefa, T.; Coombs, N.; MacLachlan, M.J.; Ozin, G.A. Periodic mesoporous organosilicas, PMOs: Fusion of organic and inorganic chemistry ‘inside’ the channel walls of hexagonal mesoporous silica. Chem. Commun. 1999, 2539–2540. [Google Scholar] [CrossRef]
- Landskron, K.; Hatton, B.D.; Perovic, D.D.; Ozin, G.A. Periodic Mesoporous Organosilicas Containing Interconnected [Si(CH2)]3 Rings. Science 2003, 302, 266–269. [Google Scholar] [CrossRef]
- Waki, M.; Inagaki, S. Periodic mesoporous organosilicas possessing molecularly mixed pyridine and benzene moieties in the frameworks. Micropor. Mesopor. Mater. 2019, 284, 10–15. [Google Scholar] [CrossRef]
- Pineda, A.; Balu, A.M.; Campelo, J.M.; Romero, A.A.; Luque, R. Activity of amino-functionalised mesoporous solid bases in microwave-assisted condensation reactions. Catal. Commun. 2013, 33, 1–6. [Google Scholar] [CrossRef]
- Schneider, E.M.; Zeltner, M.; Kränzlin, N.; Grass, R.N.; Stark, W.J. Base-free Knoevenagel condensation catalyzed by copper metal surfaces. Chem. Commun. 2015, 51, 10695–10698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chughtai, A.H.; Ahmad, N.; Younus, H.A.; Laypkov, A.; Verpoort, F. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804–6849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, S.D.; Borths, C.J.; DiVirgilio, E.; Huang, L.; Liu, P.; Morrison, H.; Sugi, K.; Tanaka, M.; Woo, J.C.S.; Faul, M.M. Development of a Scalable Synthesis of a GPR40 Receptor Agonist. Org. Process Res. Dev. 2011, 15, 570–580. [Google Scholar] [CrossRef]
- Mondal, J.; Modak, A.; Bhaumik, A. Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels–Alder reactions. J. Mol. Catal. A 2011, 335, 236–241. [Google Scholar] [CrossRef]
- Sakthivel, B.; Dhakshinamoorthy, A. Chitosan as a reusable solid base catalyst for Knoevenagel condensationreaction. J. Colloid Interface Sci. 2017, 485, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Jayaram, R.V. A novel catalyst for the Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate under solvent free conditions. Catal. Commun. 2006, 7, 931–935. [Google Scholar] [CrossRef]
- Yao, N.; Tan, J.; Liu, X.; Liu, Y.; Hu, Y.L. Multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids as novel and efficient catalysts for heterogeneous Knoevenagel condensation. J. Saudi Chem. Soc. 2019, 23, 740–752. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, X.; Cheng, Q.; Zhang, T.; Luo, Y. An efficient and recyclable acid-base bifunctional core-shell nanocatalyst for the one-pot deacetalization-Knoevenagel tandem reaction. New J. Chem. 2018, 42, 11610–11615. [Google Scholar] [CrossRef]
- del Hierro, I.; Pérez, Y.; Fajardo, M. Supported choline hydroxide (ionic liquid) on mesoporous silica as heterogeneous catalyst for Knoevenagel condensation reactions. Microporous Mesoporous Mater. 2018, 263, 173–180. [Google Scholar] [CrossRef]
- Kankala, R.K.; Zhang, H.; Liu, C.-G.; Kanubaddi, K.R.; Lee, C.-H.; Wang, S.-B.; Cui, W.; Santos, H.; Lin, K.; Chen, A.-Z. Metal species-encapsulated mesoporous silica nanoparticles: Current advancements and latest breakthroughs. Adv. Funct. Mater. 2019, 29, 1902652. [Google Scholar] [CrossRef]
- Kankala, R.K.; Liu, C.-G.; Yang, D.-Y.; Wang, S.-B.; Chen, A.-Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem. Eng. J. 2020, 383, 123138. [Google Scholar] [CrossRef]
Entry | R | Conversion (%) | Selectivity (%) |
---|---|---|---|
1 | H | 99 | >99 |
2 | 4-NO2 | 98 | >99 |
3 | 3-NO2 | 95 | >99 |
4 | 4-Cl | 99 | >99 |
5 | 2-Cl | 95 | >99 |
6 | 4-OMe | 94 | >99 |
8 | 2-Me | 92 | >99 |
9 | 4-Me | 90 | >99 |
10 | Blank | - | - |
Entry | Catalyst | Condition | Time | Conversion (%) | Ref. |
---|---|---|---|---|---|
1 | PMO-Py (20 mg) | PMO-Py | 2 h | 99 | This work |
2 | amino-functionalized mesoporous silica (20 mg) | EtOH/RT | 6 h | 90 | [27] |
3 | Chitosan (25 mg) | EtOH/40 °C | 6 h | 99 | [28] |
4 | MgO/ZrO2 (20 wt%) | 60 °C | 20 min | 93 | [29] |
5 | PMO-IL-NTf2 (0.2 g) | EtOH/RT | 20 min | 96 | [30] |
6 | SO3H-AA@MNP (20 mg) | H2O-toluene/90 °C | 2 h | 94 | [31] |
7 | Chol-SBA-15 (5mg) | EtOH/60 °C | 60 min | 100 | [32] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, F.; Ebrahimi, A.Z.; Rabiee, A.; Pineda, A.; Luque, R. Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction. Materials 2020, 13, 1097. https://doi.org/10.3390/ma13051097
Rajabi F, Ebrahimi AZ, Rabiee A, Pineda A, Luque R. Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction. Materials. 2020; 13(5):1097. https://doi.org/10.3390/ma13051097
Chicago/Turabian StyleRajabi, Fatemeh, Arezoo Zare Ebrahimi, Ahmad Rabiee, Antonio Pineda, and Rafael Luque. 2020. "Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction" Materials 13, no. 5: 1097. https://doi.org/10.3390/ma13051097
APA StyleRajabi, F., Ebrahimi, A. Z., Rabiee, A., Pineda, A., & Luque, R. (2020). Synthesis and Characterization of Novel Pyridine Periodic Mesoporous Organosilicas and Its Catalytic Activity in the Knoevenagel Condensation Reaction. Materials, 13(5), 1097. https://doi.org/10.3390/ma13051097