Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Strength
3.2. Toughness
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Takaki, S.; Tsuchiyama, T.; Nakashima, K.; Hidaka, H.; Kawasaki, K.; Futamura, Y. Microstructure Development of Steel during Severe Plastic Deformation. Met. Mater. Int. 2004, 10, 533–539. [Google Scholar] [CrossRef]
- Kwon, H.; Cha, J.C.; Kim, C.H. The effect of grain size on fracture behaviour in tempered martensite embrittlement for AISI 4340 steel. Mater. Sci. Eng. 1988, 100, 121–128. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, J.S.; Lee, Y.K. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel. Scr. Mater. 2008, 59, 87–90. [Google Scholar] [CrossRef]
- Hansen, N.; Huang, X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998, 46, 1827–1836. [Google Scholar] [CrossRef]
- Eggeler, G.; Nilsvang, N.; Iischner, B. Microstructural changes in a 12% chromium steel during creep. Steel Res. 1987, 58, 97–103. [Google Scholar] [CrossRef]
- Maruyama, K.; Sawada, K.; Koike, J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 2001, 41, 641–653. [Google Scholar] [CrossRef]
- Langford, G.; Cohen, M. Calculation of Cell-Size Strengthening of Wire-Drawn Iron. Metall. Trans. 1969, 1, 1478–1480. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. The first bulk nanostructured metal. Sci. Technol. Adv. Mater. 2013, 14, 014202. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Development of Hard Bainite. ISIJ Int. 2003, 43, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Timokhina, I.; Beladi, H.; Xiong, X.Y.; Adachi, Y.; Hodgson, P.D. Application of Advanced Experimental Techniques for the Microstructural Characterization of Nanobainitic Steels. Solid State Phenom. 2011, 172–174, 1249–1254. [Google Scholar] [CrossRef]
- Ryaposov, I.V.; Kleiner, L.M.; Shatsov, A.A. Volume nanostructurization of low-carbon martensitic steels by thermal action. Met. Sci. Heat Treat. 2013, 54, 440–445. [Google Scholar] [CrossRef]
- Hu, F.; Wu, K.M.; Misra, R.D.K. Nanostructured martensite–austenite dual phase steels. Mater. Sci. Technol. 2012, 28, 1314–1319. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Zhang, Z.; Venkatasurya, P.K.C.; Somani, M.C.; Karjalainen, L.P. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion. Mater. Sci. Eng. A 2010, 527, 7779–7792. [Google Scholar] [CrossRef]
- Hidaka, H.; Kimura, Y.; Takaki, S. Consolidation of eutectoid steel powder with mechanical milling. J. Jpn. Soc. Powder Powder Metall. 1999, 46, 1256–1260. [Google Scholar] [CrossRef]
- Isheim, D.; Gagliano, M.S.; Fine, M.E.; Seidman, D.N. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 2006, 54, 841–849. [Google Scholar] [CrossRef]
- Tsuji, N.; Saito, Y.; Utsunomiya, H.; Tanigawa, S. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scr. Mater. 1999, 40, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Ivanisenko, Y.V.; Rauch, E.F.; Baudelet, B. Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 1996, 44, 4705–4712. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, E.; Valiev, R.Z.; Zhu, Y. Tough Nanostructured Metals at Cryogenic Temperatures. Adv. Mater. 2004, 16, 328–331. [Google Scholar] [CrossRef]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys. J. Mater. Sci. 2010, 45, 4889–4894. [Google Scholar] [CrossRef] [Green Version]
- Jamaati, R.; Toroghinejad, M.R.; Amirkhanlou, S.; Edris, H. On the Achievement of Nanostructured Interstitial Free Steel by Four-Layer Accumulative Roll Bonding Process at Room Temperature. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 4013–4019. [Google Scholar] [CrossRef]
- Li, Y.; Raabe, D.; Herbig, M.; Choi, P.P.; Goto, S.; Kostka, A.; Yarita, H.; Borchers, C.; Kirchheim, R. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Influence of Iron Oxide Particles on the Strength of Ball-Milled Iron. Mater. Trans. 2006, 47, 1508–1517. [Google Scholar] [CrossRef]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Nano-subgrain Strengthening in Ball-milled Iron. Mater. Sci. Eng. A 2006. [Google Scholar] [CrossRef] [Green Version]
- Morales-Rivas, L.; Yen, H.W.; Huang, B.M.; Kuntz, M.; Caballero, F.G.; Yang, J.R.; Garcia-Mateo, C. Tensile Response of Two Nanoscale Bainite Composite-Like Structures. JOM 2015, 67, 2223–2235. [Google Scholar] [CrossRef]
- Greben’kov, S.K.; Shatsov, A.A.; Larinin, D.M.; Kleiner, L.M. Strain hardening of low-carbon martensitic steels. Phys. Met. Metallogr. 2013, 114, 868–876. [Google Scholar] [CrossRef]
- Kleyner, L.M.; Larinin, D.M.; Shatsov, A.A. Nanostructured low-carbon lath martensite—Base for high structural strength of steels. Inorg. Mater. Appl. Res. 2014, 5, 289–292. [Google Scholar] [CrossRef]
- Miihkinen, V.T.T.; Edmonds, D.V. Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Technol. 1987, 3, 441–449. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Nanostructured bainite. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Kirbis, P.; Pirtovšek, T.V.; Anžel, I.; Brunčko, M. Designing tough nanostructured bainite. In Proceedings of the Materials Science and Technology Conference and Exhibition 2017, MS and T 2017, Pittsburgh, PA, USA, 8–12 October 2017; Volume 1. [Google Scholar]
- Khare, S.; Lee, K.; Bhadeshia, H.K.D.H. Carbide-free bainite: Compromise between rate of transformation and properties. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2010, 41, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H. The Nature, Mechanism and Properties of Strong Bainite. In Proceedings of the 1st International Symposium on Steel Science, Kyoto, Japan, 16–19 May 2007; pp. 17–26. [Google Scholar]
- Kang, M.; Zhang, M.X.; Zhu, M. In situ observation of bainite growth during isothermal holding. Acta Mater. 2006, 54, 2121–2129. [Google Scholar] [CrossRef]
- Hillert, M. Diffusion in growth of bainite. Metall. Mater. Trans. A 1994, 25, 1957–1966. [Google Scholar] [CrossRef]
- Shiflet, G.J.; Hackenberg, R.E. Partitioning and the growth of bainite. Scr. Mater. 2002, 47, 163–167. [Google Scholar] [CrossRef]
- Borgenstam, A.; Hillert, M.; Ågren, J. Metallographic evidence of carbon diffusion in the growth of bainite. Acta Mater. 2009, 57, 3242–3252. [Google Scholar] [CrossRef]
- Chang, L.C.; Bhadeshia, H.K.D.H. Stress-affected transformation to lower bainite. J. Mater. Sci. 1996, 31, 2145–2148. [Google Scholar] [CrossRef]
- Su, T.J.; Aeby-Gautier, E.; Denis, S. Morphology changes in bainite formed under stress. Scr. Mater. 2006, 54, 2185–2189. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Sourmail, T.; Caballero, F.G.; Smanio, V.; Kuntz, M.; Ziegler, C.; Leiro, A.; Vuorinen, E.; Elvira, R.; Teeri, T. Nanostructured Steel Industrialization: A Plausible Reality. Mater. Sci. Technol. 2013, 30, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.T.; Chang, H.T.; Huang, B.M.; Huang, C.Y.; Yang, J.R. Microstructural characterization of Charpy-impact-tested nanostructured bainite. Mater. Charact. 2015, 107, 63–69. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, G.; Tian, J.; Hu, H.; Yuan, Q. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition. Metals 2017, 7, 263. [Google Scholar] [CrossRef]
Steel/Production Route | Ref. | |||
---|---|---|---|---|
Nanostructured carbide free lower bainite—Superbainite | [9] | |||
Nanostructured kinetically activated bainite (steel A0-current work) | ||||
Formation of fine bainite | [10] | |||
Nanostructured martensite | [11] | 1530 | ||
Nanostructured martensite/austenite dual phase steels | [12] | 2000 * | ||
Reverse transformed austenite | [13] | 1400 | ||
Mechanical milling | [14] | 2850 | ||
Nanoparticle strengthening | [15] | |||
ARB accumulative roll bonding | [16] | |||
HPT high pressure torsion | [17] | |||
ECAP Equal channel angular processing | [18] |
C | Si | Mn | Mo | Cr | V | Al | Ti | Nb | Other | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|
Steel A0 | 0.7 | 1.2 | 2.5 | 0.6 | 1.8 | 0.22 | 1.5 | 0.015 | 0.02 | <1 | Bal. |
Sample | Phases (vol.%) | Hardness (HRC) |
---|---|---|
Continuously cooled ① | Gama = 22%, Alfa = 78% | 61–62 |
Intercritically annealed ② | Gama = 27.8%, Alfa = 72.2% | 56–57 |
Aged Naturally for 12 days ③ | Gama = 0.7%, Alfa = 99.3% | 61–62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirbiš, P.; Anžel, I.; Rudolf, R.; Brunčko, M. Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials 2020, 13, 1220. https://doi.org/10.3390/ma13051220
Kirbiš P, Anžel I, Rudolf R, Brunčko M. Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials. 2020; 13(5):1220. https://doi.org/10.3390/ma13051220
Chicago/Turabian StyleKirbiš, Peter, Ivan Anžel, Rebeka Rudolf, and Mihael Brunčko. 2020. "Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength" Materials 13, no. 5: 1220. https://doi.org/10.3390/ma13051220
APA StyleKirbiš, P., Anžel, I., Rudolf, R., & Brunčko, M. (2020). Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials, 13(5), 1220. https://doi.org/10.3390/ma13051220