Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rubber Vulcanization
2.2. Waste Tires
2.3. Rubber Devulcanization
2.4. Revulcanization
2.5. Potential Advantages of Rubber Recycling
- *
- Conservation of natural resources (less natural rubber is needed)
- *
- Conservation of energy (less transportation, less energy in manufacturing)
- *
- Avoidance of uncontrolled or high-emission end-of-life scenarios such as dumping or burning.
- *
- Cost savings for goods producers, since the devulcanized material is cheaper than its replacement, natural rubber.
3. Results
4. Conclusions
- (a)
- make raw material manufacturing (i.e., latex/natural rubber) more sustainable
- (b)
- make attrition to microplastics particles from tires less harmful, i.e., biodegradable. This might be achieved through suitable bioplastics materials.
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018 (accessed on 21 September 2019).
- Landfill of Waste Directive, 1999. European Commission, Brussels, Belgium. Council, Directive 1999/31/EC. Available online: http://ec.europa.eu/environment/waste/landfill_index.htm (accessed on 5 March 2020).
- Arthur, A.; Ali, S.; Hernández-Martínez, J.; Akah, A. Feedstock recycling of polymer wastes. Curr. Opin. Solid State Mater. Sci. 2004, 8, 419–425. [Google Scholar]
- Aguado, J.; Serrano, D.P. Feedstock Recycling of Plastic Wastes, RSC Clean Technology Monographs; Royal Society of Chemistry: Cambridge, UK, 1999; p. 192. [Google Scholar]
- Kaminsky, W.; Mennerich, C.; Zhang, Z. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. J. Anal. Appl. Pyrolysis 2009, 85, 334–337. [Google Scholar] [CrossRef]
- Available online: https://www.borealisgroup.com/news/omv-reoil-circular-economy-project-omv-and-borealis-extend-their-partnership (accessed on 5 March 2020).
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Khan, F.R. Ecotoxicology of micronized tire rubber: Past, present and future considerations. Sci. Total Environ. 2020, 706, 135694. [Google Scholar] [CrossRef]
- Soumyajit, G.; Arun, K.J.; Madhusudan, R.; Amit, D.; Debapriya, D. Tuning of accelerator and curing system in devulcanized green natural rubber compounds. Polym. Test. 2018, 69, 133–145. [Google Scholar]
- Mangili, I.; Collina, E.M.; Anzano, M.; Pitea, D.; Lasagni, M. Characterization and supercritical CO2 devulcanization of cryo-ground tire rubber: Influence of devulcanization process on reclaimed material. Polym. Degrad. Stab. 2014, 102, 15–24. [Google Scholar] [CrossRef]
- Gamboa, A.R.; Rocha, A.M.; Dos Santos, L.R.; De Carvalho, J.A. Tire pyrolysis oil in Brazil: Potential production and quality of fuel. Renew. Sustain. Energy Rev. 2020, 120, 109614. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Y.; Ma, L.; Zhou, L.; He, H. Tailoring the properties of ground tire rubber/high-density polyethylene blends by combining surface devulcanization and in-situ grafting technology. Mater. Chem. Phys. 2018, 220, 161–170. [Google Scholar] [CrossRef]
- Lapkovskis, V.; Mironovs, V.; Goljandin, D. Suitability of devulcanized crumb rubber for oil spills remediation. Energy Procedia 2018, 147, 351–357. [Google Scholar] [CrossRef]
- Dobrota, D.; Dobrota, G. An innovative method in the regeneration of waste rubber and the sustainable development. J. Clean. Prod. 2018, 172, 3591–3599. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Seghar, S.; Hocine, N.A. Recycling of rubber wastes by devulcanization. Resour. Conserv. Recycl. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Martin, J. Forrest. In Recycling and Re-use of Waste Rubber, 2nd ed.; de Gruyter: Berlin, Germany, 2019; ISBN 978-3110644005. [Google Scholar]
- Sadhan, K.; De Avraam, I.; Klementina, K. Rubber Recycling; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0367392659. [Google Scholar]
- Sun, X.; Isayev, A.I. Continuous ultrasonic devulcanization comparison of carbon black filled synthetic isoprene and natural rubbers. Rubber Chem. Technol. 2008, 81, 19–46. [Google Scholar] [CrossRef]
- Seghar, S.; Asaro, L.; Rolland-Monnet, M.; Hocine, N.A. Thermo-mechanical devulcanization and recycling of rubber industry waste. Resour. Conserv. Recycl. 2019, 144, 180–186. [Google Scholar] [CrossRef]
- Horikx, M.M.J. Chain scissions in a polymer network. Polym. Sci. 1956, 19, 445. [Google Scholar]
- Devon, E.; Bart, D.; van der Gryp, P.; Johann, G. A Comparison of the Selectivity for Crosslink Cleavage of Three Devulcanisation Processes. In Proceedings of the Unesco/Iupac Workshop & Conference on Macromolecules & Materials, Port Elizabeth, South Africa, 7–10 September 2015. [Google Scholar]
- Ghosh, J.; Hait, S.; Ghorai, S.; Mondal, D.; Wießner, S.; Das, A.; De, D. Cradle-to-cradle approach to waste tyres and development of silica based green tyre composites. Resour. Conserv. Recycl. 2020, 154, 104629. [Google Scholar] [CrossRef]
- Roychand, R.; Pramanik, B.K. Identification of micro-plastics in Australian road dust. J. Environ. Chem. Eng. 2020, 8, 103647. [Google Scholar] [CrossRef]
- Huang, W.; Lin, P.; Tang, N.; Hu, J.; Xiao, F. Effect of crumb rubber degradation on components distribution and rheological properties of Terminal Blend rubberized asphalt binder. Constr. Build. Mater. 2017, 151, 897–906. [Google Scholar] [CrossRef]
- Vinay Hosahally, N.; Krishna Prapoorna, B. Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resour. Conserv. Recycl. 2020, 155, 104655. [Google Scholar]
- Wang, H.; Liu, X.; Zhang, H.; Apostolidis, P.; Skarpas, A. Micromechanical modelling of complex shear modulus of crumb rubber modified bitumen. Mater. Des. 2020, 188, 108467. [Google Scholar] [CrossRef]
- Song, P.; Wan, C.; Xie, Y.; Formela, K.; Wang, S. Vegetable derived-oil facilitating, carbon black migration from waste tire rubbers and its reinforcement effect. Waste Manag. 2018, 78, 238–248. [Google Scholar] [CrossRef]
- Lackner, M.; Wintersteller, R.; Markl, E. Feedstock recycling of rubber—A review of devulcanisation technologies. Tyre Rubber Recycl. 2020, 44, 28–32. [Google Scholar]
- De Sousa, F.D.; Scuracchio, C.; Hu, G.-H.; Hoppe, S. Devulcanization of waste tire rubber by microwaves. Polym. Degrad. Stab. 2017, 138, 169–181. [Google Scholar] [CrossRef]
- De, D.; De, D.; Singharoy, G. Reclaiming of Ground Rubber Tire by a Novel, Reclaiming Agent. I. Virgin Natural/Reclaimed GRT Vulcanizates. Polym. Eng. Sci. 2007, 47, 1091–1100. [Google Scholar] [CrossRef]
- Rios, R.R.; Gontijo, M.; Ferraz, V.P.; Lago, R.M.; Araujo, M.H. Devulcanization of, Styrenebutadiene (SBR) waste tire by controlled oxidation. J. Braz. Chem. Soc. 2006, 17, 603–608. [Google Scholar] [CrossRef]
- Temram, C.; Wattanakul, K. Investigation the degradation and devulcanization reaction, of thermoplastic vulcanizate using peroxide compound. AIP Conf. Proc. 2012, 1482, 246–251. [Google Scholar]
- Isayev, A.I.; Yushanov, S.P.; Kim, S.-H.; Levin, V.Y. Ultrasonic devulcanization of waste rubbers: Experimentation and modeling. Rheol. Acta 1996, 35, 616–630. [Google Scholar] [CrossRef]
- Garcia, P.S.; de Sousa, F.D.B.; de Lima, J.A.; Cruz, S.A.; Scuracchio, C.H. Devulcanization of ground tire rubber: Physical and chemical changes after different microwave exposure times. Express Polym. Lett. 2015, 9, 1015–1026. [Google Scholar] [CrossRef]
- Ghavipanjeh, F.; Ziaei Rad, Z.; Pazouki, M. Devulcanization of Ground Tires by Different Strains of Bacteria: Optimization of Culture Condition by Taguchi Method. J. Polym. Environ. 2018, 26, 3168–3175. [Google Scholar] [CrossRef]
- Molanorouzi, M.; Mohaved, S.O.; Movahed, S.O. Reclaiming waste tire rubber by an irradiation technique. Polym. Degrad. Stab. 2016, 128, 115–125. [Google Scholar] [CrossRef]
- Chen, D.T.; Perman, C.A.; Riechert, M.E.; Hoven, J. Depolymerization of tire and natural rubber using supercritical fluids. J. Hazard. Mater. 1995, 44, 53–60. [Google Scholar] [CrossRef]
- Formela, K.; Cysewska, M.; Haponiuk, J. The influence of screw configuration and screw speed of co-rotating twin screw extruder on the properties of products obtained by thermomechanical reclaiming of ground tire rubber. Polimery 2014, 59, 2. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Seghar, S.; Poirot, N.; Ait Hocine, N. Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO2. Available online: https://publications.waset.org/abstracts/81372/pdf (accessed on 5 March 2020).
- Rooj, S.; Basak, G.C.; Maji, P.K.; Bhowmick, A.K. New Route for Devulcanization of Natural Rubber and the Properties of Devulcanized Rubber. J. Polym. Environ. 2011, 19, 382–390. [Google Scholar] [CrossRef]
- Kojima, M.; Kohjiya, S.; Ikeda, Y. Role of supercritical carbon dioxide for selective impregnation of decrosslinking reagent into isoprene rubber vulcanizate. Polymer 2005, 46, 2016–2019. [Google Scholar] [CrossRef]
- Kojima, M.; Tosaka, M.; Ikeda, Y. Chemical recycling of sulfur-cured natural rubber using supercritical carbon dioxide. Green Chem. 2004, 6, 84. [Google Scholar] [CrossRef]
- Kojima, M.; Tosaka, M.; Ikeda, Y.; Kohjiya, S. Devulcanization of carbon black filled natural rubber using supercritical carbon dioxide. J. Appl. Polym. Sci. 2005, 95, 137–143. [Google Scholar] [CrossRef]
- Kojima, M.; Ogawa, K.; Mizoshima, H.; Tosaka, M.; Kohjiya, S.; Ikeda, Y. Devulcanization of sulfur-cured isoprene rubber in supercritical carbon dioxide. Rubber Chem. Technol. 2003, 76, 957–968. [Google Scholar] [CrossRef]
- Jiang, K.; Shi, J.; Ge, Y.; Zou, R.; Yao, P.; Li, X.; Zhang, L. Complete devulcanization of sulfur cured butyl rubber by using supercritical carbon dioxide. J. Appl. Polym. Sci. 2012, 127, 2397–2406. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, K.; Ren, D.; Zou, H.; Wang, Y.; Lv, X.; Zhang, L. Structure and performance of reclaimed rubber obtained by different methods. J. Appl. Polym. Sci. 2013, 129, 999–1007. [Google Scholar] [CrossRef]
- Mangili, I.; Oliveri, M.; Anzano, M.; Collina, E.; Lasagni, M. Full factorial experimental design to study the devulcanization of ground tire rubber in supercritical carbon dioxide. J. Supercrit. Fluids 2014, 92, 249–256. [Google Scholar] [CrossRef]
- Liang, T. Continuous Devulcanization of Ground Tire Rubber of Different Particle, Sizes Using an Ultrasonic Twin-Screw Extruder. Master’s Thesis, The University of Akron, Akron, OH, USA, 2013. [Google Scholar]
- Seghar, S.; Aït Hocine, N.; Mittal, V.; Azem, S.; Al-Zohbi, F.; Schmaltz, B.; Poirot, N. Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid. Express Polym. Lett. 2015, 9, 1076–1086. [Google Scholar] [CrossRef]
- Saputra, R.; Walvekar, R.; Khalid, M.; Shahbaz, K.; Ramarad, S. Effective devulcanization of ground tire rubber using choline chloride-based deep eutectic solvents. J. Environ. Chem. Eng. 2019, 7, 103151. [Google Scholar] [CrossRef]
- Zhang, X.; Saha, P.; Cao, L.; Li, H.; Kim, J. Devulcanization of waste rubber powder using thiobisphenols as novel reclaiming agent. Waste Manag. 2018, 78, 980–991. [Google Scholar] [CrossRef]
- Ghorai, S.; Bhunia, S.; Roy, M.; Debapriya, D. Mechanochemical devulcanization of natural rubber vulcanizate by dual function disulfide chemicals. Polym. Degrad. Stab. 2016, 129, 34–46. [Google Scholar] [CrossRef]
- Dubkov, K.A.; Semikolenov, D.P.; Ivanov, D.P.; Babushkin, D.E.; Panov, G.I.; Parmon, V.N. Reclamation of waste tyre rubber with nitrous oxide. Polym. Degrad. Stab. 2012, 97, 1123–1130. [Google Scholar] [CrossRef]
- Sabzekar, M.; Chenar, M.P.; Mortazavi, S.M.; Kariminejad, M.; Asadi, S.; Zohuri, G.H. Influence of process variables on chemical devulcanization of sulfur-cured natural rubber. Polym. Degrad. Stab. 2015, 118, 88–95. [Google Scholar] [CrossRef]
- Sutanto, P.; Picchioni, F.; Janssen, L. Modelling a continuous devulcanization in an extruder. Chem. Eng. Sci. 2006, 61, 7077–7086. [Google Scholar] [CrossRef] [Green Version]
- Mangili, I.; Lasagni, M.; Anzano, M.; Collina, E.M.; Tatangelo, V.; Franzetti, A.; Caracino, P.; Isayev, A.I. Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polym. Degrad. Stab. 2015, 121, 369–377. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wang, X.; Hao, C. Deformation reversibility enhancement of thermoplastic vulcanizates based on high density polyethylene and ethylene–propylene–diene terpolymer, C. Mater. Chem. Phys. 2012, 134, 1185–1189. [Google Scholar] [CrossRef]
- Danielli Bastos De Sousa, F.; Scuracchio, C.H.; Hu, G.; Hoppe, S. Effects of processing parameters on the properties of microwave-devulcanized ground tire rubber/polyethylene dynamically revulcanized blends. J. Appl. Polym. Sci. 2016, 133, 43503. [Google Scholar] [CrossRef]
- He, M.; Li, Y.; Qiao, B.; Ma, X.; Song, J.; Wang, M. Effect of dicumyl peroxide and phenolic resin as a mixed curing system on the mechanical properties and morphology of TPVs based on HDPE/ground tire rubber. Polym. Compos. 2015, 36, 1907–1916. [Google Scholar] [CrossRef]
- Céspedes, R.I.N.; Gámez, J.F.H.; Velázquez, M.G.N.; Belmontes, F.Á.; de León, R.E.D.; Fernández, O.S.R.; Orta, C.A.Á.; Hernández, E.H. Thermoplastic elastomers based on high-density polyethylene, ethylene–propylene–diene terpolymer, and ground tire rubber dynamically vulcanized with dicumyl peroxide. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Magioli, M.; Sirqueira, A.S.; Soares, B.G. The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber. Polym. Test. 2010, 29, 840–848. [Google Scholar] [CrossRef]
- Tyromer. Available online: http://tyromer.com/ (accessed on 26 February 2020).
- Phenix. Available online: http://phenix-technologies.eu/products/ (accessed on 26 February 2020).
- Levgum. Available online: https://www.levgum.com/index.php/technology (accessed on 26 February 2020).
- Escobar-Arnanz, J.; Mekni, S.; Blanco, G.; Eljarrat, E.; Barceló, D.; Ramos, L. Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1536, 163–175. [Google Scholar] [CrossRef] [PubMed]
- The Guardian, Spanish Tyre Dump Fire Triggers Evacuation of 9000 People. Available online: https://www.theguardian.com/world/2016/may/13/spanish-tyre-dump-fire-triggers-evacuation-of-9000-people (accessed on 5 March 2020).
- Wintersteller, R. Private Communication, 2020.
- Available online: https://ec.europa.eu/environment/circular-economy/ (accessed on 26 February 2020).
- Dominic, M.; Joseph, R.; Begum, P.S.; Kanoth, B.P.; Chandra, J.; Thomas, S. Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohydr. Polym. 2019, 230, 115620. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Geoff, D.; Zhao, M. The past, present and future of carbon black as a rubber reinforcing filler—A review. J. Clean. Prod. 2020, 247, 119115. [Google Scholar] [CrossRef]
- Jiang, C.; Bo, J.; Xiao, X.; Zhang, S.; He, H. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Manag. 2019, 102, 732–742. [Google Scholar] [CrossRef]
- Li, K.; You, J.; Liu, Y.; Zhu, K.; Xue, C.; Guo, X.; Wang, Z.; Zhang, Y. Functionalized starch as a novel eco-friendly vulcanization accelerator enhancing mechanical properties of natural rubber. Carbohydr. Polym. 2019, 231, 115705. [Google Scholar] [CrossRef]
- Jabulani, I.; James, G.; Shanganyane, C.; Hlangothi, P.; Lukanyo, L.B. Effect of single-walled carbon nanotubes on the cure and mechanical properties of reclaimed rubber/natural rubber blends. Mater. Today Commun. 2020, 23, 100852. [Google Scholar]
- Manzano-Agugliaro, F.; Salmerón-Manzano, E.; Alcayde, A.; Garrido-Cardenas, J.A. Worldwide Research Trends in the Recycling of Materials. Encycl. Renew. Sustain. Mater. 2020, 5, 303–312. [Google Scholar]
- Isayev, A. Recycling of natural and synthetic isoprene rubbers. In Chemistry, Manufacture and Applications of Natural Rubber; Woodhead Publishing: Cambridge, UK, 2014; pp. 395–435. [Google Scholar]
- Bockstal, L.; Berchem, T.; Schmetz, Q.; Richel, A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. J. Clean. Prod. 2019, 236, 117574. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Mészáros, L.; Bárány, T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J. Mater. Sci. 2013, 48, 1–38. [Google Scholar] [CrossRef]
- Simon, D.Á.; Pirityi, D.; Tamás-Bényei, P.; Bárány, T. Microwave devulcanization of ground tire rubber and applicability in SBR compounds. J. Appl. Polym. Sci. 2020, 137. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.F.; Gouveia, J.M.; Maia, C.H.; Scuracchio, S.A. Cruz: 2D and 3D imaging of the deformation behavior of partially devulcanized rubber/polypropylene blends. Express Polym. Lett. 2018, 12, 1047–1060. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markl, E.; Lackner, M. Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review. Materials 2020, 13, 1246. https://doi.org/10.3390/ma13051246
Markl E, Lackner M. Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review. Materials. 2020; 13(5):1246. https://doi.org/10.3390/ma13051246
Chicago/Turabian StyleMarkl, Erich, and Maximilian Lackner. 2020. "Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review" Materials 13, no. 5: 1246. https://doi.org/10.3390/ma13051246
APA StyleMarkl, E., & Lackner, M. (2020). Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review. Materials, 13(5), 1246. https://doi.org/10.3390/ma13051246