‘Metal Complexes as Ligands’ for the Synthesis of Coordination Polymers: A MnIII Monomer as a Building Block for the Preparation of an Unprecedented 1-D {MnIIMnIII}n Linear Chain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of (Pr2NH2)[Mn(sacb)2] (1)
2.2. Synthesis of {[Mn2(sacb)2(H2O)2(MeOH)2](NO3)}n (2)
2.3. Single-Crystal X-ray Crystallography
3. Results and Discussion
3.1. Synthetic Comments
3.2. Description of Structures
3.3. IR Spectroscopy
3.4. Solid-State Magnetic Susceptibility Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Papatriantafyllopoulou, C.; Moushi, E.E.; Christou, G.; Tasiopoulos, A.J. Filling the gap between the quantum and classical worlds of nanoscale magnetism: Giant molecular aggregates based on paramagnetic 3d metal ions. Chem. Soc. Rev. 2016, 45, 1597–1628. [Google Scholar] [CrossRef]
- Christou, G.; Gatteschi, D.; Hendrickson, D.N.; Sessoli, R. Single-molecule magnets. MRS Bull. 2000, 25, 66–71. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, MS, USA, 2006. [Google Scholar]
- Sun, H.-L.; Wang, Z.-M.; Gao, S. Strategies towards single-chain magnets. Coord. Chem. Rev. 2010, 254, 1081–1100. [Google Scholar] [CrossRef]
- Coulon, C.; Miyasaka, H.; Clérac, R. Single-chain magnets: Theoretical approach and experimental systems. Struct. Bond. 2006, 122, 163–206. [Google Scholar] [CrossRef]
- Bogani, L.; Vindigni, A.; Sessoli, R.; Gatteschi, D. Single chain magnets: Where to from here? J. Mater. Chem. 2008, 18, 4750–4758. [Google Scholar] [CrossRef]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Holynska, M. (Ed.) Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Pedersen, K.S.; Vindigni, A.; Sessoli, R.; Coulon, C.; Clérac, R. Single-chain magnets. In Molecular Magnetic Materials: Concepts and Applications; Sieklucka, B., Pinkowicz, D., Eds.; Wiley: Weinheim, Germany, 2017. [Google Scholar]
- Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; Venturi, A.; Vindigni, A.; Rettori, A.; Pini, M.G.; Novak, M.A. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 2001, 40, 1760–1763. [Google Scholar] [CrossRef]
- Allão Cassaro, R.A.; Reis, S.G.; Araujo, T.S.; Lahti, P.M.; Novak, M.A.; Vaz, M.G.F. A single-chain magnet with a very high blocking temperature and a strong coercive field. Inorg. Chem. 2015, 54, 9381–9383. [Google Scholar] [CrossRef]
- Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. Evidence for single-chain magnet behavior in a MnIII-NiII chain designed with high spin magnetic units: a route to high temperature metastable magnets. J. Am. Chem. Soc. 2002, 124, 12837–12844. [Google Scholar]
- Wei, R.-M.; Cao, F.; Li, J.; Yang, L.; Han, Y.; Zhang, X.-L.; Zhang, Z.; Wang, X.-Y.; Song, Y. Single-chain magnets based on octacyanotungstate with the highest energy barriers for cyanide compounds. Sci. Rep. 2016, 6, 24372. [Google Scholar] [CrossRef]
- Brockman, J.T.; Stamatatos, T.C.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Synthesis and characterization of a Mn22 single-molecule magnet and a [Mn22]n single-chain magnet. Inorg. Chem. 2007, 46, 9160–9171. [Google Scholar] [CrossRef] [PubMed]
- Przybylak, S.W.; Tuna, F.; Teat, S.J.; Winpenny, R.E.P. A homospin iron (ii) single chain magnet. Chem. Commun. 2008, 17, 1983–1985. [Google Scholar] [CrossRef] [PubMed]
- Palii, A.V.; Reu, O.S.; Ostrovsky, S.M.; Klokishner, S.I.; Tsukerblat, B.S.; Sun, Z.-M.; Mao, J.-G.; Prosvirin, A.V.; Zhao, H.-H.; Dunbar, K.R. A highly anisotropic cobalt (II)-based single-chain magnet: Exploration of spin canting in an antiferromagnetic array. J. Am. Chem. Soc. 2008, 130, 14729–14738. [Google Scholar] [CrossRef]
- Christou, G. Single-molecule magnets: A molecular approach to nanoscale magnetic materials. Polyhedron 2005, 24, 2065–2075. [Google Scholar] [CrossRef]
- Xu, Χ.-Β.; Wang, B.-W.; Pan, F.; Wang, Z.-M.; Gao, S. Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers. Angew. Chem. Int. Ed. 2007, 46, 7388–7392. [Google Scholar] [CrossRef]
- Alexandropoulos, D.I.; Nguyen, T.N.; Cunha-Silva, L.; Zafiropoulos, T.F.; Escuer, A.; Christou, G.; Stamatatos, T.C. Slow magnetization relaxation in unprecedented MnIII4DyIII3 and MnIII4DyIII5 clusters from the use of N-salicylidene-o-aminophenol. Inorg. Chem. 2013, 52, 1179–1181. [Google Scholar] [CrossRef]
- Athanasopoulou, A.A.; Pilkington, M.; Raptopoulou, C.P.; Escuer, A.; Stamatatos, T.C. Structural aesthetics in molecular nanoscience: A unique Ni26 cluster with a ‘rabbit-face’ topology and a discrete Ni18 ‘molecular chain’. Chem. Commun. 2014, 50, 14942–14945. [Google Scholar] [CrossRef] [Green Version]
- Mazarakioti, E.C.; Regier, J.; Cunha-Silva, L.; Wernsdorfer, W.; Pilkington, M.; Tang, J.; Stamatatos, T.C. Large energy barrier and magnetization hysteresis at 5 K for a symmetric {Dy2} complex with spherical tricapped trigonal prismatic DyIII ions. Inorg. Chem. 2017, 56, 3568–3578. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Kottke, T.; Stalke, D. Crystal handling at low temperatures. J. Appl. Cryst. 1993, 26, 615–619. [Google Scholar] [CrossRef] [Green Version]
- SAINT+. Data Integration Engine v. 7.23a ©; Bruker AXS: Madison, WI, USA, 1997. [Google Scholar]
- Sheldrick, G.M. SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS: Madison, WI, USA, 1998. [Google Scholar]
- Bruker AXS Inc. APEX-III; Bruker AXS: Madison, WI, USA, 2016. [Google Scholar]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Bradenburg, K. DIAMOND, Release 3.1f, Crystal Impact GbR.; DIAMOND: Bonn, Germany, 2008. [Google Scholar]
- Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.K.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge structural database and visualizing crystal structures. Acta Cryst. 2002, 58, 389–397. [Google Scholar] [CrossRef]
- Liu, W.; Thorp, H.H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg. Chem. 1993, 32, 4102–4105. [Google Scholar] [CrossRef]
- Lazzarini, I.C.; Carrella, L.; Rentschler, E.; Alborés, P. One dimensional Mn (III) Schiff-base complex organization through very strong symmetrical H-bond interaction. Inorg. Chim. Acta 2016, 453, 692–696. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Zartilas, S.; Manos, M.J.; Pichon, C.; Clérac, R.; Tasiopoulos, A.J. A single-chain magnet based on linear [MnIII2MnII] units. Chem. Commun. 2014, 50, 14873–14876. [Google Scholar] [CrossRef] [Green Version]
- Stamatatos, T.C.; Abboud, K.A.; Wernsdorfer, W.; Christou, G. {Mn6}n single-chain magnet bearing azides and di-2-pyridylketone-derived ligands. Inorg. Chem. 2009, 48, 807–809. [Google Scholar] [CrossRef]
- Moushi, E.E.; Tasiopoulos, A.J.; Manos, M.J. Synthesis and structural characterization of a metal Cluster and a coordination polymer based on the [Mn6(μ4-O)2]10+ Unit. Bioinorg. Chem. Appl. 2010, 2010, 367128. [Google Scholar] [CrossRef]
- Moushi, E.E.; Stamatatos, T.C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A.J. A Mn17 octahedron with a giant ground-state spin: Occurrence in discrete form and as multidimensional coordination polymers. Inorg. Chem. 2009, 48, 5049–5051. [Google Scholar] [CrossRef]
- Ovcharenko, V.; Fursova, E.; Romanenko, G.; Ikorskii, V. Synthesis and structure of heterospin compounds based on the [Mn6(O)2Piv10]-cluster unit and nitroxide. Inorg. Chem. 2004, 43, 3332–3334. [Google Scholar] [CrossRef]
- Malaestean, I.L.; Kravtsov, V.C.; Speldrich, M.; Dulcevscaia, G.; Simonov, Y.A.; Lipkowski, J.; Ellern, A.; Baca, S.G.; Kögerler, P. One-dimensional coordination polymers from hexanuclear manganese carboxylate clusters featuring a {MnII4MnIII2(μ4-O)2} core and spacer linkers. Inorg. Chem. 2010, 49, 7764–7772. [Google Scholar] [CrossRef]
- Mukherjee, S.; Lan, Y.; Kostakis, G.E.; Clérac, R.; Anson, C.E.; Powell, A.K. Influence of water ligands on structural diversity: From a one-dimensional linear coordination polymer to three-dimensional ferrimagnetic diamondoid metal-organic frameworks. Cryst. Growth Des. 2009, 9, 577–585. [Google Scholar] [CrossRef]
- Katsoulakou, E.; Bekiari, V.; Raptopoulou, C.P.; Terzis, A.; Lianos, P.; Manessi-Zoupa, E.; Perlepes, S.P. Dinuclear versus tetranuclear cluster formation in zinc(II) nitrate/di-2-pyridyl ketone chemistry: Synthetic, structural and spectroscopic studies. Spectrochim. Acta 2005, 61, 1627–1638. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, NY, USA, 1986; pp. 229, 254–257. [Google Scholar]
- Alexopoulou, K.I.; Zagoraiou, E.; Zafiropoulos, T.F.; Raptopoulou, C.P.; Psycharis, V.; Terzis, A.; Perlepes, S.P. Mononuclear anionic octahedral cobalt(III) complexes based on N-salicylidene-o-aminophenol and its derivatives: Synthetic, structural and spectroscopic studies. Spectrochim. Acta Part A 2015, 136, 122–130. [Google Scholar] [CrossRef]
- Aziz, A.A.A.; Salem, A.N.M.; Sayed, M.A.; Aboaly, M.M. Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M(II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH(2)). J. Mol. Struct. 2012, 1010, 130–138. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Christou, G. Mixed Valency in polynuclear MnII/MnIII, MnIII/MnIV, and MnII/MnIII/MnIV clusters: A foundation for high-spin molecules and single-molecule magnets. Philos. Trans. R. Soc. A 2008, 366, 113–125. [Google Scholar] [CrossRef]
- Landee, C.P.; Turnbull, M.M. A gentle introduction to magnetism: Units, fields, theory, and experiment. J. Coord. Chem. 2014, 67, 375–439. [Google Scholar] [CrossRef]
- Wang, S.-P.; Song, Y.; Gao, D.-Z.; Li, L.-C.; Wang, Q.-M.; Liao, D.-Z.; Jiang, Z.-H.; Yan, S.-P. Novel 1-D chains constructed of rings which include six metal atoms [M2Au4] (M = Ni, Zn) with aurophilic interactions: Structure, magnetic, and spectral studies. Helv. Chim. Acta 2005, 88, 3000–3010. [Google Scholar] [CrossRef]
- Athanasopoulou, A.A.; Raptopoulou, C.P.; Escuer, A.; Stamatatos, T.C. Rare nuclearities in Ni (II) cluster chemistry: A Ni11 cage from the first use of N-salicylidene-2-amino-5-chlorobenzoic acid in metal cluster chemistry. RSC Adv. 2014, 4, 12680–12684. [Google Scholar] [CrossRef]
Parameter | 1∙MeOH | 2∙2H2O |
---|---|---|
Empirical formula | C35H36N3O7MnCl2 | C30H32N3O15Mn2Cl2 |
FW/g mol−1 | 736.51 | 855.36 |
Temperature/K | 150(2) | 150(2) |
Crystal system | Monoclinic | Triclinic |
Space group | P21/c | P-1 |
a/Å | 14.594(5) | 8.298(7) |
b/Å | 12.770(5) | 10.975(7) |
c/Å | 19.715(7) | 12.548(13) |
α/° | 90 | 69.85(3) |
β/° | 109.561(9) | 79.84(4) |
γ/° | 90 | 87.23(2) |
Volume/Å3 | 3462(2) | 1055.9(16) |
Z | 4 | 1 |
ρcalc/g cm−3 | 1.413 | 1.345 |
μ/mm−1 | 0.588 | 0.787 |
F(000) | 1528 | 437 |
Radiation | Mo Kα (λ = 0.71073) | Mo Kα (λ = 0.71073) |
Index ranges | −18 ≤ h ≤ 18 | −9 ≤ h ≤ 9 |
−15 ≤ k ≤ 15 | −13 ≤ k ≤ 13 | |
−24 ≤ l ≤ 24 | −14 ≤ l ≤ 14 | |
Reflections collected | 107100 | 29694 |
Data/restraints/parameters | 7021/0/437 | 3705/7/277 |
Goodness-of-fit on F2 | 1.145 | 1.068 |
Final R indexes [I ≥ 2σ(I)] a,b | R1 = 0.0416 | R1 = 0.0455 |
wR2 = 0.1035 | wR2 = 0.1199 | |
Final R indexes [all data] | R1 = 0.0756 | R1 = 0.0564 |
wR2 = 0.1297 | wR2 = 0.1257 | |
(Δρ)max,min/e Å−3 | 0.828 and −0.592 | 1.082 and −0.312 |
Mn1-O1 | 1.883(2) | Mn1-O8 | 1.882(2) |
---|---|---|---|
Mn1-O3 | 2.185(2) | Mn1-N1 | 2.054(2) |
Mn1-O5 | 2.154(2) | Mn1-N2 | 2.049(2) |
O8-Mn1-O1 | 179.6(8) | N2-Mn1-O5 | 83.7(8) |
O8-Mn1-N2 | 87.7(9) | N1-Mn1-O5 | 93.7(8) |
O1-Mn1-N2 | 92.6(9) | O8-Mn1-O3 | 88.0(8) |
O8-Mn1-N1 | 91.5(9) | O1-Mn1-O3 | 91.9(8) |
O1-Mn1-N1 | 88.0(9) | N2-Mn1-O3 | 100.3(8) |
N2-Mn1-N1 | 177.3(9) | N1-Mn1-O3 | 82.2(8) |
O8-Mn1-O5 | 91.6(8) | O5-Mn1-O3 | 175.8(7) |
O1-Mn1-O5 | 88.4(8) |
Mn1-O1 | 1.894(3) | Mn2-O1W | 2.180(3) |
---|---|---|---|
Mn1-O2 | 2.144(2) | Mn2-O3 | 2.160(3) |
Mn1-N1 | 2.023(3) | Mn2-O5 | 2.189(3) |
O1-Mn1-O2 | 92.1(1) | O1W-Mn2-O3 | 91.9(1) |
O1-Mn1-O2′ | 107.9(2) | O1W-Mn2-O3′′ | 88.1(1) |
O1-Mn1-N1 | 109.9(2) | O1W-Mn2-O5 | 90.3(1) |
O1-Mn1-N1′ | 108.6(2) | O1W-Mn2-O5′ | 89.7(1) |
O2-Mn1-N1 | 103.0(2) | O3-Mn2-O5 | 89.9(1) |
O2-Mn1-O1′ | 97.0(2) | O3-Mn2-O5′ | 90.1(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantelis, K.N.; Karotsis, G.; Lampropoulos, C.; Cunha-Silva, L.; Escuer, A.; Stamatatos, T.C. ‘Metal Complexes as Ligands’ for the Synthesis of Coordination Polymers: A MnIII Monomer as a Building Block for the Preparation of an Unprecedented 1-D {MnIIMnIII}n Linear Chain. Materials 2020, 13, 1352. https://doi.org/10.3390/ma13061352
Pantelis KN, Karotsis G, Lampropoulos C, Cunha-Silva L, Escuer A, Stamatatos TC. ‘Metal Complexes as Ligands’ for the Synthesis of Coordination Polymers: A MnIII Monomer as a Building Block for the Preparation of an Unprecedented 1-D {MnIIMnIII}n Linear Chain. Materials. 2020; 13(6):1352. https://doi.org/10.3390/ma13061352
Chicago/Turabian StylePantelis, Konstantinos N., Georgios Karotsis, Christos Lampropoulos, Luís Cunha-Silva, Albert Escuer, and Theocharis C. Stamatatos. 2020. "‘Metal Complexes as Ligands’ for the Synthesis of Coordination Polymers: A MnIII Monomer as a Building Block for the Preparation of an Unprecedented 1-D {MnIIMnIII}n Linear Chain" Materials 13, no. 6: 1352. https://doi.org/10.3390/ma13061352
APA StylePantelis, K. N., Karotsis, G., Lampropoulos, C., Cunha-Silva, L., Escuer, A., & Stamatatos, T. C. (2020). ‘Metal Complexes as Ligands’ for the Synthesis of Coordination Polymers: A MnIII Monomer as a Building Block for the Preparation of an Unprecedented 1-D {MnIIMnIII}n Linear Chain. Materials, 13(6), 1352. https://doi.org/10.3390/ma13061352