Cyclodextrins Modified/Coated Metal–Organic Frameworks
Abstract
:1. Introduction
2. Characterization and Instruments
3. Interactions and Bonds between CDs and MOFs
3.1. Metal Cation–Ligand Interaction
3.2. Host–Guest Interaction
3.3. Hydrogen Bonding
3.4. Covalent Modifications
4. Applications
4.1. Drug Delivery and Release System
4.2. Catalysis and Detection Materials
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
ALD | Atomic layer deposition |
BET | Brunauer–Emmett–Teller |
CTAB | Cetyltrimethylammonium bromide |
CDs | Cyclodextrins |
CL | Chemiluminescence |
CV | Cyclic voltammetry |
DA | Dopamine |
DOX | Doxorubicin |
DLS | Dynamic light scattering |
GO | Graphene oxide |
HCPT | 10-hydroxycamptothecin |
HMeIm | 2-methylimidazole |
IPA | Isopropyl alcohol |
ITC | Isothermal titration calorimetry |
JNPs | Janus nanoparticles |
Ka | Association constant |
Khop | Microscopic rate constant |
LOD | Limits of detection |
MAS | Magic-angle spinning |
MOFs | Metal–organic frameworks |
PAA | Poly(acrylic acid) |
PEG | Poly(ethylene glycol) |
PDA | Polydopamine |
PXRD | Powder X-ray diffraction |
SEM | Scanning electronic microscopy |
TGA | Thermogravimetric analysis |
TEM | Transmission electron microscopy |
XPS | X-ray photoelectron spectroscopy |
ZIF | Zeolitic imidazolate framework |
References
- Helal, A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. Multivariate metal-organic frameworks. Natl. Sci. Rev. 2017, 4, 296–298. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.-L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef]
- Kalaj, M.; Bentz, K.C.; Ayala, S.; Palomba, J.M.; Barcus, K.S.; Katayama, Y.; Cohen, S.M. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 2020. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Stang, P.J. Soft materials with diverse suprastructures via the self-assembly of metal–organic complexes. Acc. Chem. Res. 2019, 52, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Sepehrpour, H.; Fu, W.; Sun, Y.; Stang, P.J. Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc. 2019, 141, 14005–14020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lee, J.; Lammer, A.D.; Chi, X.; Brewster, J.T.; Lynch, V.M.; Li, H.; Zhang, Z.; Sessler, J.L. Self-assembled pyridine-dipyrrolate cages. J. Am. Chem. Soc. 2016, 138, 4573–4579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lee, J.; Brewster, J.T., 2nd; Chi, X.; Lynch, V.M.; Sessler, J.L. Cation-based structural tuning of pyridine dipyrrolate cages and morphological control over their self-assembly. J. Am. Chem. Soc. 2019, 141, 4749–4755. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Xu, Q.-Y.; Liu, Y. Molecular recognition and biological application of modified β-cyclodextrins. Sci. Chin. Chem. 2019, 62, 549–560. [Google Scholar] [CrossRef]
- Rajkumar, T.; Kukkar, D.; Kim, K.-H.; Sohn, J.R.; Deep, A. Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. J. Ind. Eng. Chem. 2019, 72, 50–66. [Google Scholar] [CrossRef]
- Prochowicz, D.; Kornowicz, A.; Lewiński, J. Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: Fertile landscape for chemistry and materials science. Chem. Rev. 2017, 117, 13461–13501. [Google Scholar] [CrossRef]
- He, Y.; Hou, X.; Liu, Y.; Feng, N. Recent progress in the synthesis, structural diversity and emerging applications of cyclodextrin-based metal-organic frameworks. J. Mater. Chem. B 2019, 7, 5602–5619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zou, R.; Zhao, Y. Macrocycle-based metal-organic frameworks. Coordin. Chem. Rev. 2015, 292, 74–90. [Google Scholar] [CrossRef]
- Forgan, R.S.; Smaldone, R.A.; Gassensmith, J.J.; Furukawa, H.; Cordes, D.B.; Li, Q.; Wilmer, C.E.; Botros, Y.Y.; Snurr, R.Q.; Slawin, A.M.Z.; et al. Nanoporous carbohydrate metal–organic frameworks. J. Am. Chem. Soc. 2011, 134, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Gassensmith, J.J.; Furukawa, H.; Smaldone, R.A.; Forgan, R.S.; Botros, Y.Y.; Yaghi, O.M.; Stoddart, J.F. Strong and reversible binding of carbon dioxide in a green metal–organic framework. J. Am. Chem. Soc. 2011, 133, 15312–15315. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, W.; Huang, J.; Qiu, S.; Zhong, H.; Liu, D.; Liu, J. Cyclodextrin-based metal-organic rrameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics 2018, 10, 271. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, Z.; Zhao, Y. Pillararene-based self-assembled amphiphiles. Chem. Soc. Rev. 2018, 47, 5491–5528. [Google Scholar] [CrossRef]
- Meng, X.; Gui, B.; Yuan, D.; Zeller, M.; Wang, C. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci. Adv. 2016, 2, e1600480. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V.; et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep. 2015, 5, 7925. [Google Scholar] [CrossRef] [Green Version]
- Hod, I.; Farha, O.K.; Hupp, J.T. Modulating the rate of charge transport in a metal–organic framework thin film using host:guest chemistry. Chem. Commun. 2016, 52, 1705–1708. [Google Scholar] [CrossRef]
- Lee, D.T.; Zhao, J.; Peterson, G.W.; Parsons, G.N. Catalytic “MOF-Cloth” formed via directed supramolecular assembly of UiO-66-NH2 crystals on atomic layer deposition-coated textiles for rapid degradation of chemical warfare agent simulants. Chem. Mater. 2017, 29, 4894–4903. [Google Scholar] [CrossRef]
- Golmohamadpour, A.; Bahramian, B.; Shafiee, A.; Ma’mani, L. Slow released delivery of alendronate using β-cyclodextrine modified Fe–MOF encapsulated porous hydroxyapatite. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1991–2000. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, N.; Zhuo, L.; Qin, P.; Chen, S.; Wang, Y.; Lu, Z. “MOF-cloth” formed via supramolecular assembly of NH2-MIL-101(Cr) crystals on dopamine modified polyimide fiber for high temperature fume paper-based filter. Compos. Part B Eng. 2019, 168, 406–412. [Google Scholar] [CrossRef]
- Aykac, A.; Noiray, M.; Malanga, M.; Agostoni, V.; Casas-Solvas, J.M.; Fenyvesi, E.; Gref, R.; Vargas-Berenguel, A. A non-covalent “click chemistry” strategy to efficiently coat highly porous MOF nanoparticles with a stable polymeric shell. Biochim. Biophys. Acta 2017, 1861, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
- Lajevardi, A.; Sadr, M.H.; Yaraki, M.T.; Badieie, A.; Armaghana, M. A pH-responsive and magnetic Fe3O4@silica@MIL-100(Fe)/b-CD nanocomposite as a drug nanocarrier: Loading and release study of cephalexin. New J. Chem. 2018, 42, 9690–9701. [Google Scholar] [CrossRef]
- Mao, X.; Lu, Y.; Zhang, X.; Huang, Y. beta-Cyclodextrin functionalization of metal-organic framework MOF-235 with excellent chemiluminescence activity for sensitive glucose biosensing. Talanta 2018, 188, 161–167. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Gao, Y.; Gao, M.; Huang, X.; Lv, J.; Xu, D. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples. Ecotoxicol. Environ. Saf. 2019, 183, 109546. [Google Scholar] [CrossRef]
- Cutrone, G.; Li, X.; Casas-Solvas, J.M.; Menendez-Miranda, M.; Qiu, J.; Benkovics, G.; Constantin, D.; Malanga, M.; Moreira-Alvarez, B.; Costa-Fernandez, J.M.; et al. Design of engineered cyclodextrin derivatives for spontaneous coating of highly porous metal-organic framework nanoparticles in aqueous media. Nanomaterials 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, L.; Liang, X.; Wang, T.; Chen, X.; Liu, C.; Li, L.; Wang, C. Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy. Chem. Eng. J. 2019, 378, 122175. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, Y.; Wang, R.; Yin, M.; Wei, Y.; Du, J.; Huang, D.; Chen, W. Fabrication and properties of electrostatic spinning Ag@MOF-5/beta-CD antibacterial fiber membrane. Mater. Rep. 2019, 33, 3825–3828. [Google Scholar]
- Gong, M.; Yang, J.; Li, Y.; Zhuang, Q.; Gu, J. Substitution-type luminescent MOF sensor with built-in capturer for selective cholesterol detection in blood serum. J. Mater. Chem. C 2019, 7, 12674–12681. [Google Scholar] [CrossRef]
- Sun, X.; Tao, Y.; Du, Y.; Ding, W.; Chen, C.; Ma, X. Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim. Acta 2019, 186, 462. [Google Scholar] [CrossRef] [PubMed]
CDs | Role of CDs | MOFs | Role of MOFs | Interactions | Stimuli Responsiveness | Ref. |
---|---|---|---|---|---|---|
β-CDs | Cape to stop releasing cargo | UiO-68-azo Zr-MOF | Storing cargo in water | Azobenzene–β-CDs host–guest interactions | UV irradiation/competitive agent | [17] |
H1 | Improving poor colloidal stability, controlling the release of cargos, providing active recognition sites | MIL-100(Fe) | Storing cargo in water | Phosphate–FeIII interactions | - | [18] |
β-CDs | Modulate rates of charge transport in MOFs films | NU-1000 | Charge transport | Ferrocene–β-CDs host–guest interactions | Redox | [19] |
β-CDs⸧L5 complex | Surfactant assembly agents | UiO-66-NH2 | Catalyst for degradation of chemical warfare agents | Hydrogen bonds | - | [20] |
β-CDs | Storing drug | Fe-MIL-88B-NH2 | Storing the same drug | Hydrogen bonds | - | [21] |
β-CDs⸧L5 complex | Surfactant assembly agents | NH2-MIL-101(Cr) | Filtration | Hydrogen bonds | - | [22] |
H1, H2, H5, H6 | Increasing the solubility of hydrophobic cargos, improving poor colloidal stability, controlling the release of cargos, providing active recognition sites | MIL-100(Fe) | Storing cargo in water | Phosphate–FeIII interactions | - | [23] |
β-CDs | pH-responsive moiety | MIL-100(Fe) | Storing drug | Possible covalent bonds | pH/temperature | [24] |
β-CDs | Enhancing the catalytic performance of MOFs | MOF-235 | Catalysis | Hydroxyl–FeIII interactions | - | [25] |
carboxyl-β-CDs | Enhancing selective adsorption capacities for guests | M-MOF (Zn) | Enlarging surface area | Covalent bonds | - | [26] |
H9–H12 | Assisting in escaping immune system and enhancing biocompatibility | MIL-100(Fe) | Storing drug | Phosphate–FeIII interactions | - | [27] |
H13 | Loading hydrophobic drugs | ZIF-8 | Responsive active sites/storing hydrophilic drugs | Polydopamine acting as the bridge | - | [28] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, Z.; Shen, J. Cyclodextrins Modified/Coated Metal–Organic Frameworks. Materials 2020, 13, 1273. https://doi.org/10.3390/ma13061273
Zhang H, Liu Z, Shen J. Cyclodextrins Modified/Coated Metal–Organic Frameworks. Materials. 2020; 13(6):1273. https://doi.org/10.3390/ma13061273
Chicago/Turabian StyleZhang, Huacheng, Zhaona Liu, and Jian Shen. 2020. "Cyclodextrins Modified/Coated Metal–Organic Frameworks" Materials 13, no. 6: 1273. https://doi.org/10.3390/ma13061273
APA StyleZhang, H., Liu, Z., & Shen, J. (2020). Cyclodextrins Modified/Coated Metal–Organic Frameworks. Materials, 13(6), 1273. https://doi.org/10.3390/ma13061273