Fabrication, Modeling and Characterization of Magnetostrictive Short Fiber Composites
Abstract
:1. Introduction
2. Experiment
3. Analysis
3.1. Basic Equations
3.2. Finite Element Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Narita, F.; Fox, M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 2018, 20, 1700743. [Google Scholar] [CrossRef] [Green Version]
- Atulasimha, J.; Flatau, A.B. A review of magnetostrictive iron-gallium alloys. Smart Mater. Struct. 2011, 20, 43001. [Google Scholar] [CrossRef]
- Deng, Z.; Dapino, M.J. Review of magnetostrictive vibration energy harvesters. Smart Mater. Struct. 2017, 26, 103001. [Google Scholar] [CrossRef]
- Nakajima, T.; Takeuchi, T.; Yuito, I.; Kato, K.; Saito, M.; Abe, K.; Sasaki, T.; Sekiguchi, T.; Yamaura, S. Effect of annealing on magnetostrictive properties of Fe-Co alloy thin films. Mater. Trans. 2014, 55, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Yamaura, S.; Nakajima, T.; Satoh, T.; Ebata, T.; Furuya, Y. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling. Mater. Sci. Eng. B 2015, 193, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhan, Q.; Yang, H.; Li, H.; Zhang, S.; Liu, Y.; Wang, B.; Tan, X.; Li, R.W. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers. AIP Adv. 2016, 6, 35206. [Google Scholar] [CrossRef]
- Bennett, S.P.; Baldwin, J.W.; Staruch, M.; Matis, B.R.; LaComb, J.; van’t Erve, O.M.J.; Bussmann, K.; Metzler, M.; Gottron, N.; Zappone, W.; et al. Magnetic field response of doubly clamped magnetoelectric microelectromechanical AIN-FeCo resonators. Appl. Phys. Lett. 2017, 111, 252903. [Google Scholar] [CrossRef]
- Wang, W.; Jia, Y.; Xue, X.; Liang, Y.; Du, Z. Magnetostrictive effect in micro-dotted FeCo film coated surface acoustic wave devices. Smart Mater. Struct. 2018, 27, 105040. [Google Scholar]
- Zhu, L.; Li, K.; Luo, Y.; Yu, D.; Wang, Z.; Wu, G.; Xie, J.; Tang, Z. Magnetostrictive properties and detection efficiency of TbDyFe/FeCo composite materials for non-destructive testing. J. Rare Earths 2019, 37, 166–170. [Google Scholar] [CrossRef]
- Yang, Z.; Nakajima, K.; Onodera, R.; Tayama, T.; Chiba, D.; Narita, F. Magnetostrictive clad steel plates for high-performance vibration energy harvesting. Appl. Phys. Lett. 2018, 112, 73902. [Google Scholar] [CrossRef]
- Yang, Z.; Kurita, H.; Onodera, R.; Tayama, T.; Chiba, D.; Narita, F. Evaluation of vibration energy harvesting using a magnetostrictive Iron-Cobalt/Nickel-clad plate. Smart Mater. Struct. 2019, 28, 034001. [Google Scholar] [CrossRef]
- Narita, F. Inverse magnetostrictive effect in Fe29Co71 wire/polymer composites. Adv. Eng. Mater. 2017, 19, 1600586. [Google Scholar] [CrossRef]
- Narita, F.; Katabira, K. Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction. Mater. Trans. 2017, 58, 302–304. [Google Scholar] [CrossRef] [Green Version]
- Katabira, K.; Yoshida, Y.; Masuda, A.; Watanabe, A.; Narita, F. Fabrication of Fe-Co magnetostrictive fiber reinforced plastic composites and their sensor performance evaluation. Materials 2018, 11, 406. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Nakajima, K.; Jiang, L.; Kurita, H.; Murasawa, G.; Narita, F. Design, fabrication and evaluation of metal-matrix lightweight magnetostrictive fiber composites. Mater. Des. 2019, 175, 107803. [Google Scholar] [CrossRef]
- Kurita, H.; Katabira, K.; Yoshida, Y.; Narita, F. Footstep energy harvesting with the magnetostrictive fiber integrated shoes. Materials 2019, 12, 2055. [Google Scholar] [CrossRef] [Green Version]
- Katabira, K.; Kurita, H.; Yoshida, Y.; Narita, F. Fabrication and characterization of carbon fiber reinforced plastics containing magnetostrictive Fe-Co fibers with damage self-detection capability. Sensors 2019, 19, 4984. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Narita, F. Corona poling conditions for barium titanate/epoxy composites and their unsteady wind energy harvesting potential. Adv. Eng. Mater. 2019, 21. [Google Scholar] [CrossRef]
- Wang, Z.; Narita, F. Fabrication of potassium sodium niobate nano-particle/polymer composites with piezoelectric stability and their application to unsteady wind energy harvesters. J. Appl. Phys. 2019, 126, 224501. [Google Scholar] [CrossRef]
- Wan, Y.; Fang, D.; Hwang, K.C. Non-linear constitutive relations for magnetostrictive materials. Int. J. Non-Linear Mech. 2003, 38, 1053–1065. [Google Scholar] [CrossRef]
- Grössinger, R.; Turtelli, R.S.; Mehmood, N.; Heiss, S.; Muller, H.; Bormio-Nunes, C. Giant magnetostriction in rapidly quenched Fe–Ga? J. Magn. Magn. Mater. 2008, 320, 2457–2465. [Google Scholar] [CrossRef]
- Grössinger, R.; Sorta, S.; Turtelli, R.S. Magnetostriction measurements on soft magnetic ribbons. J. Electr. Eng. 2012, 63, 9–14. [Google Scholar]
Elastic Compliance (× 10−12 m2/N) | Piezomagnetic Constant (× 10−12 m/A) | Permeability (× 10−6 H/m) | |||||||
---|---|---|---|---|---|---|---|---|---|
5.5 | 5.5 | 14.3 | −1.65 | −1.65 | −60.3 | 125 * 1280 ** | 318 | 37.7 | 37.7 |
Piezomagnetic Constant (× 10−12 m/A) | |||
---|---|---|---|
- | Unidirectional aligned composite | Randomly oriented composite | Bulk |
Calculation Experiment | 765 - | 484 460 | - 125 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Mori, K.; Nakajima, K.; Narita, F. Fabrication, Modeling and Characterization of Magnetostrictive Short Fiber Composites. Materials 2020, 13, 1494. https://doi.org/10.3390/ma13071494
Wang Z, Mori K, Nakajima K, Narita F. Fabrication, Modeling and Characterization of Magnetostrictive Short Fiber Composites. Materials. 2020; 13(7):1494. https://doi.org/10.3390/ma13071494
Chicago/Turabian StyleWang, Zhenjin, Kotaro Mori, Kenya Nakajima, and Fumio Narita. 2020. "Fabrication, Modeling and Characterization of Magnetostrictive Short Fiber Composites" Materials 13, no. 7: 1494. https://doi.org/10.3390/ma13071494
APA StyleWang, Z., Mori, K., Nakajima, K., & Narita, F. (2020). Fabrication, Modeling and Characterization of Magnetostrictive Short Fiber Composites. Materials, 13(7), 1494. https://doi.org/10.3390/ma13071494