Design of CNS-Li2SiO3 Permeable Protective Coatings and Effects on Mortar Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Orthogonal Experimental Design
2.3. Process of Coating Preparation
2.4. Methods
2.4.1. Compressive Strength
2.4.2. Water Absorption
2.4.3. Resistance to Chloride Ions Permeability
2.4.4. Resistance to Carbonation
2.4.5. SEM Analyses
2.4.6. XRD Analyses
2.4.7. MIP Analyses
3. Results and Discussions
3.1. Selection of the Optimal Mix Formulation Concerning Coating Preparation
3.2. Effects of CNS-Li2SiO3Coating on the Compressive Strength and Water Absorption of the Specimens
3.3. Effects of CNS-Li2SiO3 Coating on Chloride ion Penetration Resistance of THE Specimens
3.4. Effects of CNS-Li2SiO3 Coating on the Carbonation Resistance of Specimens
3.5. Effects of CNS-Li2SiO3 Coatings on the Microstructuresand Pore Structures of Specimens
4. Conclusions
- (1)
- The optimal mix formulation consisted of 40 wt. % of lithium silicate, 10 wt. % of sodium silicate, and 0.1 wt. % of surfactant in the preparation of Li2SiO3 coatings, obtained by an orthogonal experiment design.
- (2)
- Compared with an early age, the specimens treated with CNS-Li2SiO3coatingat a later age of mortar were more effective, citing compressive strength and water absorption of the specimens. This was due to the abundance of Ca(OH)2 present within specimens at a later age.
- (3)
- CNS-Li2SiO3 coatings favored a compressive strength increase (i.e., 19.8%), a reduction of 48-h water absorption (i.e., 72.3%), a lower chloride ion penetration depth(i.e.,44.2%), and a smaller carbonation depth(i.e., 39.1%) of specimens compared touncoated specimens. This could be attributed to the porosity reduction and denser microstructures formed owing to the inter fill of nano-SiO2 and the formation of additional C–S–H gels resulting from secondary hydration. Meanwhile, the new C–S–H gels formation was confirmed by an increment of harmless pores (i.e., 16.32%), as well as a reduction of harmful pores (i.e., 4.7%) within coated specimens in comparison to their uncoated counterparts.
Author Contributions
Funding
Conflicts of Interest
References
- Shi, X.; Xie, N.; Fortune, K.; Gong, J. Durability of steel reinforced concrete in chloride environments: An overview. Constr. Build. Mater. 2012, 30, 125–138. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Lee, H.-S. A model for predicting the carbonation depth of concrete containing low-calcium fly ash. Constr. Build. Mater. 2009, 23, 725–733. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, J.; Yan, P. The microstructure of 4-year-old hardened cement-fly ash paste. Constr. Build. Mater. 2012, 29, 114–119. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P.; Yang, J.; Zhang, B. Influence of steel slag on mechanical properties and durability of concrete. Constr. Build. Mater. 2013, 47, 1414–1420. [Google Scholar] [CrossRef]
- De Medeiros, M.H.F.; Helene, P. Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption. Constr. Build. Mater. 2009, 23, 1476–1484. [Google Scholar] [CrossRef]
- Ubaid, F.; Radwan, A.B.; Naeem, N.; Shakoor, R.A.; Ahmad, Z.; Montemor, M.; Kahraman, R.; Abdullah, A.M.; Soliman, A.; Ahmed, Z. Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel. Surf. Coat. Technol. 2019, 372, 121–133. [Google Scholar] [CrossRef]
- Baltazar, L.; Santana, J.; Lopes, B.; Rodrigues, M.P.; Correia, J.R. Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture. Constr. Build. Mater. 2014, 70, 191–200. [Google Scholar] [CrossRef]
- Ibrahim, M.; Al-Gahtani, A.; Maslehuddin, M.; Almusallam, A. Effectiveness of concrete surface treatmentmaterials in reducing chloride-induced reinforcement corrosion. Constr. Build. Mater. 1997, 11, 443–451. [Google Scholar] [CrossRef]
- Nolan, É.; Basheer, P.; Long, A.; Basheer, M. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build. Mater. 1995, 9, 267–272. [Google Scholar] [CrossRef]
- Jones, R.; Dhir, R.; Gill, J. Concrete surface treatment: Effect of exposure temperature on chloride diffusion resistance. Cem. Concr. Res. 1995, 25, 197–208. [Google Scholar] [CrossRef]
- Shi, C.J.; Wang, Y.; Pan, X.Y.; Zhang, J. Advance in inorganic surface treatment of concrete. Mater. Rev. 2017, 31, 113–119. (in Chinese). [Google Scholar]
- Mu, S.; Liu, J.; Lin, W.; Wang, Y.; Liu, J.; Shi, L.; Jiang, Q. Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr. Build. Mater. 2017, 148, 846–856. [Google Scholar] [CrossRef]
- Setyowatia, E.; Amalia, S.; Nazriati; Affandi, S.; Yuwanae, M.; Setyawan, H. Hydrophobic silica coating based on waterglass on copper by electrophoretic deposition. Appl. Mech. Mater. 2014, 493, 749–754. [Google Scholar] [CrossRef]
- Batis, G.; Pantazopoulou, P.; Routoulas, A. Corrosion protection investigation of reinforcement by inorganic coating in the presence of alkanolamine-based inhibitor. Cem. Concr. Compos. 2003, 25, 371–377. [Google Scholar] [CrossRef]
- Pan, X.; Shi, Z.; Shi, C.; Hu, X.; Wu, L. Interactions between inorganic surface treatment agents and matrix of Portland cement-based materials. Constr. Build. Mater. 2016, 113, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.-G.; Akira, Y.; Wittmann, F.; Yokota, H.; Zhang, P. Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks. Cem. Concr. Compos. 2010, 32, 101–109. [Google Scholar] [CrossRef]
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, S.L.; Wu, H.T.; Wang, J.H.; Xu, Y. Effect of lithium silicate composite sol on the properties of concrete surface. Rare Matel Mater. Eng. 2016, 45, 85–88. (in Chinese). [Google Scholar]
- Guo, P.; Qiu, Q.; Luo, Z.K. Effect of organic-inorganic hybrid protecting coating on concrete. Rare Matel Mater. Eng. 2010, 39, 169–175. [Google Scholar]
- Liu, R.; Xiao, H.; Li, H.; Sun, L.; Pi, Z.; Waqar, G.Q.; Du, T.; Yu, L. Effects of nano-SiO2 on the permeability-related properties of cement-based composites with different water/cement ratios. J. Mater. Sci. 2017, 53, 4974–4986. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Li, G.; Yue, J.; Guo, C.; Ji, Y. Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating. Constr. Build. Mater. 2018, 169, 1–7. [Google Scholar] [CrossRef]
- Collodetti, G.; Gleize, P.; Monteiro, P.J. Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. Constr. Build. Mater. 2014, 54, 99–105. [Google Scholar] [CrossRef]
- GB/T 17671-1999, Method of Testing Cements-Determination of Strength; Standards Press of China: Beijing, China, 1999.
- JGJ/T 70-2009, Standard for Test Method of Basic Properties of Construction Mortar; China Architecture & Building Press: Beijing, China, 2009.
- Ogirigbo, O.; Black, L. Chloride binding and diffusion in slag blends: Influence of slag composition and temperature. Constr. Build. Mater. 2017, 149, 816–825. [Google Scholar] [CrossRef]
- GB/T 50082-2009, Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete; China Architecture & Building Press: Beijing, China, 2009; pp. 61–63.
- Ji, T. Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 2005, 35, 1943–1947. [Google Scholar] [CrossRef]
- Ouyang, X.; Koleva, D.; Ye, G.; Van Breugel, K. Understanding the adhesion mechanisms between C S H and fillers. Cem. Concr. Res. 2017, 100, 275–283. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, C.; De Schutter, G.; Audenaert, K.; Deng, D. Chloride binding of cement-based materials subjected to external chloride environment—A review. Constr. Build. Mater. 2009, 23, 1–13. [Google Scholar] [CrossRef]
- Kwon, Y.M.; Chae, H.J.; Cho, M.S.; Park, Y.K.; Seo, H.M.; Lee, S.C.; Kim, J.C. Effect of a Li2SiO3 phase in lithium silicate-based sorbents for CO2 capture at high temperatures. Sep. Purif. Technol. 2019, 214, 104–110. [Google Scholar] [CrossRef]
- Horne, A.; Richardson, I.; Brydson, R. Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cem. Concr. Res. 2007, 37, 1613–1623. [Google Scholar] [CrossRef]
- Jo, B.W.; Kim, C.H.; Tae, G.H.; Park, J.B. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 2007, 21, 1351–1355. [Google Scholar] [CrossRef]
- Wu, Z.W.; Lian, H.Z. High Performance Concrete; China Railway Press: Beijing, China, 1999. [Google Scholar]
Oxide | SiO2 | CaO | Fe2O3 | Al2O3 | MgO | f-CaO | LOI (Loss on Ignition) |
---|---|---|---|---|---|---|---|
Content (%) | 22.56 | 61.96 | 3.89 | 5.56 | 1.93 | 0.5 | 1.64 |
Sample | Factors, Their Code (Levels) and Absolute Values | |||||
---|---|---|---|---|---|---|
Li2SiO3 (%) | Na2SiO3 (%) | PAE (%) | ||||
Coded | Values | Coded | Values | Coded | Values | |
1 | A1 | 30 | B1 | 5 | C1 | 0.05 |
2 | A1 | 30 | B2 | 10 | C2 | 0.1 |
3 | A1 | 30 | B3 | 15 | C3 | 0.15 |
4 | A2 | 40 | B1 | 5 | C2 | 0.1 |
5 | A2 | 40 | B2 | 10 | C3 | 0.15 |
6 | A2 | 40 | B3 | 15 | C1 | 0.05 |
7 | A3 | 50 | B1 | 5 | C3 | 0.15 |
8 | A3 | 50 | B2 | 10 | C1 | 0.05 |
9 | A3 | 50 | B3 | 15 | C2 | 0.1 |
Samples | Compressive Strength (MPa) | Water Absorption (%) | ||||
---|---|---|---|---|---|---|
7d | 14d | 21d | 7d | 14d | 21d | |
1 | 42.07 ± 2.04 | 42.12 ± 1.69 | 44.67 ± 2.25 | 3.06 ± 0.31 | 2.58 ± 0.26 | 2.36 ± 0.25 |
2 | 42.49 ± 1.69 | 44.87 ± 1.58 | 47.92 ± 2.35 | 2.60 ± 0.27 | 1.90 ± 0.13 | 1.88 ± 0.20 |
3 | 42.10 ± 2.15 | 44.54 ± 2.22 | 45.27 ± 2.89 | 2.62 ± 0.22 | 1.87 ± 0.21 | 2.14 ± 0.12 |
4 | 42.83 ± 2.39 | 45.72 ± 2.26 | 47.62 ± 2.66 | 2.79 ± 0.34 | 2.02 ± 0.25 | 1.96 ± 0.24 |
5 | 42.87 ± 2.11 | 45.84 ± 2.15 | 49.95 ± 2.72 | 2.04 ± 0.17 | 1.67 ± 0.23 | 1.33 ± 0.10 |
6 | 42.56 ± 2.05 | 46.36 ± 2.17 | 48.92 ± 2.42 | 2.46 ± 0.12 | 1.59 ± 0.29 | 1.44 ± 0.21 |
7 | 42.96 ± 1.88 | 45.57 ± 2.15 | 49.65 ± 1.95 | 2.58 ± 0.15 | 2.24 ± 0.26 | 2.19 ± 0.15 |
8 | 43.09 ± 1.95 | 46.33 ± 2.39 | 48.98 ± 2.12 | 2.59 ± 0.25 | 2.26 ± 0.21 | 1.98 ± 0.25 |
9 | 43.16 ± 1.39 | 46.42 ± 2.02 | 49.82 ± 2.55 | 2.68 ± 0.24 | 2.16 ± 0.22 | 1.94 ± 0.19 |
No. | Compressive Strength (MPa) | Water Absorption(%) | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
K1 | 137.86 | 141.94 | 142.57 | 6.38 | 6.51 | 5.77 |
K2 | 146.49 | 146.85 | 145.36 | 4.73 | 5.19 | 5.79 |
K3 | 148. 45 | 144.01 | 144.87 | 6.11 | 5.52 | 5.66 |
k1 | 45.95 | 47.31 | 47.52 | 2.13 | 2.17 | 1.92 |
k2 | 48.83 | 48.95 | 48.45 | 1.58 | 1.73 | 1.93 |
k3 | 49.48 | 48.00 | 48.29 | 2.04 | 1.84 | 1.89 |
R | 3.53 | 1.38 | 0.93 | 0.55 | 0.44 | 0.04 |
Better Level | A3 | B2 | C2 | A2 | B2 | C3 |
Major Factor | A > B > C | A > B > C |
Factors | Pooling | DOF (f) | Sum of Squares (SS) | Variance (V) | F-Ratio (F) | Pure SS (SS’) | Percentage Contribution (P, %) | |
---|---|---|---|---|---|---|---|---|
compressive strength | A | No | 2 | 21.163 | 10.582 | 8.379 | 19.684 | 65.037 |
B | No | 2 | 4.051 | 2.026 | 1.604 | 2.572 | 8.498 | |
C | Yes | (2) | (1.479) | - | - | - | - | |
Error | - | 2 | 3.573 | 1.787 | - | 6.731 | 22.239 | |
Total | - | 6 | 30.266 | - | - | - | 100 | |
water absorption | A | No | 2 | 0.522 | 0.261 | 16.473 | 0.519 | 57.654 |
B | No | 2 | 0.314 | 0.157 | 9.89 | 0.311 | 34.592 | |
C | Yes | (2) | (0.003) | - | - | - | - | |
Error | - | 2 | 0.06 | 0.03 | - | 0.07 | 7.754 | |
Total | - | 6 | 0.899 | - | - | - | 0.1 | |
F0.01(2,4)=18, F0.05(2,4)=6.94, F0.10(2,4)=4.32, F0.25(2,4)=2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Pan, C.; Li, D.; Geng, J.; Chen, N.; He, J.; Liu, S. Design of CNS-Li2SiO3 Permeable Protective Coatings and Effects on Mortar Matrix. Materials 2020, 13, 1733. https://doi.org/10.3390/ma13071733
Li X, Pan C, Li D, Geng J, Chen N, He J, Liu S. Design of CNS-Li2SiO3 Permeable Protective Coatings and Effects on Mortar Matrix. Materials. 2020; 13(7):1733. https://doi.org/10.3390/ma13071733
Chicago/Turabian StyleLi, Xu, Chonggen Pan, Dong Li, Jian Geng, Na Chen, Jingzi He, and Shuhua Liu. 2020. "Design of CNS-Li2SiO3 Permeable Protective Coatings and Effects on Mortar Matrix" Materials 13, no. 7: 1733. https://doi.org/10.3390/ma13071733
APA StyleLi, X., Pan, C., Li, D., Geng, J., Chen, N., He, J., & Liu, S. (2020). Design of CNS-Li2SiO3 Permeable Protective Coatings and Effects on Mortar Matrix. Materials, 13(7), 1733. https://doi.org/10.3390/ma13071733