Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications
Abstract
:1. Introduction
2. Carbon Gels-Modified TiO2 Photocatalysis
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 1977, 99, 303–304. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638. [Google Scholar] [CrossRef]
- Ishitani, O.; Inoue, C.; Suzuki, Y. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A Chem. 1993, 72, 269–271. [Google Scholar] [CrossRef]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef]
- Ma, D.; Liu, A.; Li, S.; Lu, C.; Chen, C. TiO2 photocatalysis for C–C bond formation. Catal. Sci. Technol. 2018, 8, 2030–2045. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Shi, L.; Liu, H.; Wang, T.; Ye, J. Engineering coordination polymers for photocatalysis. Nano Energy 2016, 22, 149–168. [Google Scholar] [CrossRef]
- Xiong, F.; Yu, Y.-Y.; Wu, Z.; Sun, G.; Ding, L.; Jin, Y.; Gong, X.-Q.; Huang, W. Methanol Conversion into Dimethyl Ether on the Anatase TiO2(001) Surface. Angew. Chem. Int. Ed. 2015, 55, 623–628. [Google Scholar] [CrossRef]
- Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 2010, 39, 4206. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Ai, Z.; Zhang, L. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. J. Am. Chem. Soc. 2015, 137, 6393–6399. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef] [PubMed]
- Heller, A. Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films. Accounts Chem. Res. 1995, 28, 503–508. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Sunada, K.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A Chem. 1997, 106, 51–56. [Google Scholar] [CrossRef]
- Saito, T.; Iwase, T.; Horie, J.; Morioka, T. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J. Photochem. Photobiol. B Boil. 1992, 14, 369–379. [Google Scholar] [CrossRef]
- Bet-Moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 2016, 283, 29–46. [Google Scholar] [CrossRef]
- Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M.; Rezakazemi, M.; Valderrama, C.; Cortina, J. Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chem. Eng. J. 2019, 123475, 123475. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Ma, D.; Zhai, S.; Wang, Y.; Liu, A.; Chen, C. TiO2 Photocatalysis for Transfer Hydrogenation. Molecules 2019, 24, 330. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Zhai, S.; Wang, Y.; Liu, A.; Chen, C. Synthetic Approaches for C-N Bonds by TiO2 Photocatalysis. Front. Chem. 2019, 7, 635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, A.; Ma, D.; Li, S.; Lu, C.; Li, T.; Chen, C. TiO2 Photocatalyzed C–H Bond Transformation for C–C Coupling Reactions. Catalysts 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Selective Aerobic Oxidation Mediated by TiO2 Photocatalysis. Accounts Chem. Res. 2013, 47, 355–363. [Google Scholar] [CrossRef]
- Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev. 2016, 45, 3026–3038. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, Y.; Song, W.; Chen, C.; Zhao, J. Photocatalytic Hydrodehalogenation for the Removal of Halogenated Aromatic Contaminants. ChemCatChem 2018, 11, 258–268. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N. Mechanistic study of the TiO2-assisted photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light. New J. Chem. 2000, 24, 93–98. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. [Google Scholar] [CrossRef]
- Tan, T.T.Y.; Beydoun, D.; Amal, R. Photocatalytic Reduction of Se(VI) in Aqueous Solutions in UV/TiO2 System: Kinetic Modeling and Reaction Mechanism. J. Phys. Chem. B 2003, 107, 4296–4303. [Google Scholar] [CrossRef]
- Augugliaro, V.; Camera-Roda, G.; Loddo, V.; Palmisano, G.; Palmisano, L.; Soria, J.; Yurdakal, S. Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals. J. Phys. Chem. Lett. 2015, 6, 1968–1981. [Google Scholar] [CrossRef]
- Liu, G.; Wu, T.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO2Dispersions. Environ. Sci. Technol. 1999, 33, 2081–2087. [Google Scholar] [CrossRef]
- Serpone, N.; Emeline, A. Semiconductor Photocatalysis — Past, Present, and Future Outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Lin, T.; Zhao, J.; Hidaka, H.; Serpone, N. TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation. Environ. Sci. Technol. 1999, 33, 1379–1387. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M. Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A Chem. 2006, 180, 196–204. [Google Scholar] [CrossRef]
- Valero, J.M.; Obregón, S.; Colón, G. Active Site Considerations on the Photocatalytic H2 Evolution Performance of Cu-Doped TiO2 Obtained by Different Doping Methods. ACS Catal. 2014, 4, 3320–3329. [Google Scholar] [CrossRef]
- Tang, J.; Grampp, G.; Liu, Y.; Wang, B.-X.; Tao, F.-F.; Wang, L.-J.; Liang, X.-Z.; Xiao, H.-Q.; Shen, Y.-M. Visible Light Mediated Cyclization of Tertiary Anilines with Maleimides Using Nickel(II) Oxide Surface-Modified Titanium Dioxide Catalyst. J. Org. Chem. 2015, 80, 2724–2732. [Google Scholar] [CrossRef]
- Xing, M.; Zhang, J.; Chen, F. New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl. Catal. B Environ. 2009, 89, 563–569. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Khan, S.U.; Al-Shahry, M.; Ingler, W.B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297, 2243–2245. [Google Scholar] [CrossRef]
- Shim, J.; Seo, Y.-S.; Oh, B.-T.; Cho, M. Microbial inactivation kinetics and mechanisms of carbon-doped TiO2 (C-TiO2) under visible light. J. Hazard. Mater. 2016, 306, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81, 454–456. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Synthesis of One-Dimensional CdS@TiO2 Core–Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Role of TiO2 Shell. ACS Appl. Mater. Interfaces 2012, 4, 6378–6385. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Kodan, N.; Mehta, B.R.; Held, A.; Mayrhofer, L.; Moseler, M. Band Edge Engineering in BiVO4/TiO2 Heterostructure: Enhanced Photoelectrochemical Performance through Improved Charge Transfer. ACS Catal. 2016, 6, 5311–5318. [Google Scholar] [CrossRef]
- Hirakawa, T.; Kamat, P.V. Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters. Langmuir 2004, 20, 5645–5647. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, P.; Tian, J.; Wang, F.; Yu, J. Phenylamine-Functionalized rGO/TiO2 Photocatalysts: Spatially Separated Adsorption Sites and Tunable Photocatalytic Selectivity. ACS Appl. Mater. Interfaces 2016, 8, 29470–29477. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yang, W.-Y.; Li, F.-T.; Xue, Y.-B.; Liu, R.-H.; Hao, Y.-J. In Situ Microwave-Assisted Synthesis of Porous N-TiO2/g-C3N4 Heterojunctions with Enhanced Visible-Light Photocatalytic Properties. Ind. Eng. Chem. Res. 2013, 52, 17140–17150. [Google Scholar] [CrossRef]
- Ma, D.; Liu, A.; Lu, C.; Chen, C. Photocatalytic Dehydrogenation of Primary Alcohols: Selectivity Goes against Adsorptivity. ACS Omega 2017, 2, 4161–4172. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Yan, Y.; Ji, H.; Chen, C.; Zhao, J. Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2. Chem. Commun. 2015, 51, 17451–17454. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Tung, C.-H.; Wang, Y. TiO2 Photocatalytic Cyclization Reactions for the Syntheses of Aryltetralones. ACS Catal. 2016, 6, 8389–8394. [Google Scholar] [CrossRef]
- Cherevatskaya, M.; Neumann, M.; Füldner, S.; Harlander, C.; Kümmel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; König, B. Visible-Light-Promoted Stereoselective Alkylation by Combining Heterogeneous Photocatalysis with Organocatalysis. Angew. Chem. Int. Ed. 2012, 51, 4062–4066. [Google Scholar] [CrossRef] [PubMed]
- Kistler, S.S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- Hanzawa, Y.; Kaneko, K.; Pekala, R.W.; Dresselhaus, M.S. Activated Carbon Aerogels. Langmuir 1996, 12, 6167–6169. [Google Scholar] [CrossRef]
- Heinrich, T.; Klett, U.; Fricke, J. Aerogels?Nanoporous materials part I: Sol-gel process and drying of gels. J. Porous Mater. 1995, 1, 7–17. [Google Scholar] [CrossRef]
- Lee, K.T.; Oh, S.M. Novel synthesis of porous carbons with tunable pore size by surfactant-templated sol-gel process and carbonisation. Chem. Commun. 2002, 2722–2723. [Google Scholar] [CrossRef]
- Baumann, T.F.; Satcher, J.H. Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons. Chem. Mater. 2003, 15, 3745–3747. [Google Scholar] [CrossRef]
- Baumann, T.F.; Satcher, J.H. Template-directed synthesis of periodic macroporous organic and carbon aerogels. J. Non-Cryst. Solids 2004, 350, 120–125. [Google Scholar] [CrossRef]
- Feaver, A.; Cao, G. Activated carbon cryogels for low pressure methane storage. Carbon 2006, 44, 590–593. [Google Scholar] [CrossRef]
- Zhang, S.; Gross, A.F.; Van Atta, S.L.; López, M.; Liu, P.; Ahn, C.C.; Vajo, J.J.; Jensen, C.M. The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology 2009, 20, 204027. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-S.; Mai, Y.-J.; Chiu, S.-W.; Yang, J.-H.; Chan, S.L.I. Synthesis and Characterization of Metal Hydride/Carbon Aerogel Composites for Hydrogen Storage. J. Nanomater. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Utke, R.; Milanese, C.; Javadian, P.; Jepsen, J.; Laipple, D.; Karmi, F.; Puszkiel, J.; Jensen, T.R.; Marini, A.; Klassen, T.; et al. Nanoconfined 2LiBH4–MgH2–TiCl3 in carbon aerogel scaffold for reversible hydrogen storage. Int. J. Hydrog. Energy 2013, 38, 3275–3282. [Google Scholar] [CrossRef] [Green Version]
- Gosalawit−Utke, R.; Nielsen, T.K.; Pranzas, K.; Saldan, I.; Pistidda, C.; Karimi, F.; Laipple, D.; Skibsted, J.; Jensen, T.R.; Klassen, T.; et al. 2LiBH4–MgH2 in a Resorcinol–Furfural Carbon Aerogel Scaffold for Reversible Hydrogen Storage. J. Phys. Chem. C 2011, 116, 1526–1534. [Google Scholar] [CrossRef]
- Tian, H.; Buckley, C.E.; Wang, S.; Zhou, M. Enhanced hydrogen storage capacity in carbon aerogels treated with KOH. Carbon 2009, 47, 2128–2130. [Google Scholar] [CrossRef]
- Gross, A.F.; Vajo, J.J.; Van Atta, S.L.; Olson, G.L. Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. J. Phys. Chem. C 2008, 112, 5651–5657. [Google Scholar] [CrossRef]
- Feaver, A.; Sepehri, S.; Shamberger, P.J.; Stowe, A.; Autrey, T.; Cao, G. Coherent Carbon Cryogel−Ammonia Borane Nanocomposites for H2 Storage. J. Phys. Chem. B 2007, 111, 7469–7472. [Google Scholar] [CrossRef]
- McNicholas, T.P.; Wang, A.; O’Neill, K.; Anderson, R.; Stadie, N.; Kleinhammes, A.; Parilla, P.; Simpson, L.; Ahn, C.C.; Wang, Y.; et al. H2 Storage in Microporous Carbons from PEEK Precursors. J. Phys. Chem. C 2010, 114, 13902–13908. [Google Scholar] [CrossRef] [Green Version]
- Kabbour, H.; Baumann, T.F.; Satcher, J.H.; Saulnier, A.; Ahn, C.C. Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels. Chem. Mater. 2006, 18, 6085–6087. [Google Scholar] [CrossRef]
- Mayer, S.T.; Pekala, R.; Kaschmitter, J.L. The Aerocapacitor: An Electrochemical Double?Layer Energy?Storage Device. J. Electrochem. Soc. 1993, 140, 446. [Google Scholar] [CrossRef] [Green Version]
- Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 1998, 225, 81–85. [Google Scholar] [CrossRef]
- Long, J.W.; Dening, B.M.; McEvoy, T.M.; Rolison, D.R. Carbon aerogels with ultrathin, electroactive poly(o-methoxyaniline) coatings for high-performance electrochemical capacitors. J. Non-Cryst. Solids 2004, 350, 97–106. [Google Scholar] [CrossRef]
- Bordjiba, T.; Mohamedi, M.; Dao, L.H. Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J. Power Sources 2007, 172, 991–998. [Google Scholar] [CrossRef]
- Worsley, M.A.; Satcher, J.H.; Baumann, T.F. Synthesis and Characterization of Monolithic Carbon Aerogel Nanocomposites Containing Double-Walled Carbon Nanotubes. Langmuir 2008, 24, 9763–9766. [Google Scholar] [CrossRef]
- Worsley, M.A.; Satcher, J.H.; Baumann, T.F. Enhanced thermal transport in carbon aerogel nanocomposites containing double-walled carbon nanotubes. J. Appl. Phys. 2009, 105, 84316. [Google Scholar] [CrossRef]
- Baker, W.S.; Long, J.W.; Stroud, R.M.; Rolison, D.R. Sulfur-functionalized carbon aerogels: a new approach for loading high-surface-area electrode nanoarchitectures with precious metal catalysts. J. Non-Cryst. Solids 2004, 350, 80–87. [Google Scholar] [CrossRef]
- Marie, J.; Berthon-Fabry, S.; Achard, P.; Chatenet, M.; Pradourat, A.; Chaînet, E. Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J. Non-Cryst. Solids 2004, 350, 88–96. [Google Scholar] [CrossRef]
- Du, H.; Li, B.; Kang, F.; Fu, R.; Zeng, Y. Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 2007, 45, 429–435. [Google Scholar] [CrossRef]
- Lu, A.-H.; Spliethoff, B.; Schüth, F. Aqueous Synthesis of Ordered Mesoporous Carbon via Self-Assembly Catalyzed by Amino Acid. Chem. Mater. 2008, 20, 5314–5319. [Google Scholar] [CrossRef]
- Lin, C.; Ritter, J.A. Carbonization and activation of sol–gel derived carbon xerogels. Carbon 2000, 38, 849–861. [Google Scholar] [CrossRef]
- Nardecchia, S.; Carriazo, D.; Ferrer, M.L.; Gutiérrez, M.C.; Del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 2013, 42, 794–830. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Maiyalagan, T.; Basu, R.N.; Thandavarayan, M. Nanostructured conducting polymers for energy applications: towards a sustainable platform. Nanoscale 2016, 8, 6921–6947. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Liu, Q.; Chen, Y.; Xu, A.; Wang, Y.; Tu, Y.; Han, W. Preparation, characterization and environmental application of the composite electrode TiO2-NTs/SnO2-Sb with carbon aerogels. J. Chem. Technol. Biotechnol. 2019, 94, 3124–3133. [Google Scholar] [CrossRef]
- Wu, M.; Jin, Y.; Zhao, G.; Li, M.; Li, N. Electrosorption-promoted Photodegradation of Opaque Wastewater on A Novel TiO2/Carbon Aerogel Electrode. Environ. Sci. Technol. 2010, 44, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhao, Z.; Liang, Y.; Shi, J.; Wu, D.; Liu, H.; Fu, R. Influence of Carbon Aerogel (CA) Pore Structure on Photodegradation of Methyl Orange over TiO2/CA. Chin. J. Catal. (Chin. Version) 2011, 32, 321–324. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, M.; Zhao, G.; Li, M. Photocatalysis-enhanced electrosorption process for degradation of high-concentration dye wastewater on TiO2/carbon aerogel. Chem. Eng. J. 2011, 168, 1248–1255. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, G.; Wu, M.; Lei, Y.; Li, M.; Jin, X. In Situ Induced Visible-Light Photoeletrocatalytic Activity from Molecular Oxygen on Carbon Aerogel-Supported TiO2. J. Phys. Chem. C 2011, 115, 9917–9925. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.-N.; Zhao, G.; Wu, M.; Li, M.; Li, N.; Zhang, Y.; Zhang, Y. Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters/carbon aerogel electrode under visible light. Sep. Purif. Technol. 2013, 104, 229–237. [Google Scholar] [CrossRef]
- Cui, H.; Liang, Z.-X.; Zhang, J.; Liu, H.; Shi, J. Enhancement of the photocatalytic activity of a TiO2/carbon aerogel based on a hydrophilic secondary pore structure. RSC Adv. 2016, 6, 68416–68423. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Z.; Qin, D.; Bai, S.; Peng, Q. Preparation of Ce-TiO2/carbon aerogel electrode and its performance in degradation of 4-chlorophenol. J. Rare Earths 2018, 36, 374–378. [Google Scholar] [CrossRef]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon 2019, 147, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhou, Z.; Hicks, A. Life Cycle Impact of Titanium Dioxide Nanoparticle Synthesis through Physical, Chemical, and Biological Routes. Environ. Sci. Technol. 2019, 53, 4078–4087. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Life Cycle Assessment of the Sustainability of Enhancing the Photodegradation Activity of TiO2 with Metal-Doping. Materials 2020, 13, 1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Catalyst | Condition | Pollutant | Removal Rate Constant | Ref. |
---|---|---|---|---|
TiO2/CA | 365 nm UV-irradiation under −0.6 V bias | Methylene Blue (150 mg/L) | 10.27 × 10−3 min−1 | [84] |
TiO2/CA 125 | 300 W Hg lamp | Methyl Orange (10 mg/L) | 46.2 × 10−3 min−1 | [85] |
TiO2/CA | 80 W UV light (320–400 nm, peak at 365 nm) 0.6 V bias | Alizarin Red (400 mg/L) | 9.24 × 10−3 min−1 | [86] |
TiO2/CA | 300 W Xe lamp (420–800 nm) 100 mW/cm2 −0.9 V bias | Rhodamine 6G (50 mg/L) | 3.61 × 10−3 min−1 | [87] |
TiO2NRC/CA | 500 W Xe lamp (peak at 420 nm) −0.6 V bias | p-Nitroaniline (150 mg/L) | 23.1 × 10−3 min−1 | [88] |
TiO2/CA-9.3 | 300 W Xe lamp (320–700 nm peak at 420 nm) 85 mW/cm2 | Dimethyl phthalate (2 mg/L) | 12.6 × 10−3 min−1 | [89] |
Ce-TiO2/CA | 500 W Xe lamp 0.6 V bias | 4-Chlorophenol (100 mg/L) | 9.24 × 10−3 min−1 | [90] |
RFCA/TiO2/80 °C | 2 parallel UV lights (18 W UV-A blacklights) | Methyl Orange (8 × 10−5 mol/L) | 3.3 × 10−3 min−1 | [91] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Li, J.; Liu, A.; Chen, C. Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications. Materials 2020, 13, 1734. https://doi.org/10.3390/ma13071734
Ma D, Li J, Liu A, Chen C. Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications. Materials. 2020; 13(7):1734. https://doi.org/10.3390/ma13071734
Chicago/Turabian StyleMa, Dongge, Jundan Li, Anan Liu, and Chuncheng Chen. 2020. "Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications" Materials 13, no. 7: 1734. https://doi.org/10.3390/ma13071734
APA StyleMa, D., Li, J., Liu, A., & Chen, C. (2020). Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications. Materials, 13(7), 1734. https://doi.org/10.3390/ma13071734