Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Synthesis
2.2. Catalytic Performance
2.2.1. High-Throughput Screening
2.2.2. Catalyst Activity under Pure Ammonia
2.3. Catalyst Characterization
3. Results and Discussion
3.1. Design Space for the Initial High Throughput Screening
Characterization of 4 Ru/Al2O3 and 4,12 RuK/Al2O3 Baseline Catalysts
3.2. High-Throughput Screening of Ru Based Catalysts
3.3. Influence of Sr and Fe on NH3 Decomposition Acitivty and Kinetics
3.3.1. Characterization of Sr and Fe Catalysts
3.3.2. Evaluation of Apparent Activation Energy and TOF
3.3.3. Effects of K, Fe and Sr on the Adsorption of CO on Ru
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.C.; Lund, R.F.; Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- Christensen, C.H.; Johannessen, T.; Sørensen, R.Z.; Nørskov, J.K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144. [Google Scholar] [CrossRef]
- Bell, T.E. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top. Catal. 2016, 59, 1438–1457. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, R.Z.; Nielsen, L.J.E.; Jensen, S.; Hansen, O.; Johannessen, T.; Quaade, U.; Christensen, C.H. Catalytic ammonia decomposition: Miniaturized production of COx-free hydrogen for fuel cells. Catal. Commun. 2005, 6, 229–232. [Google Scholar] [CrossRef]
- Zhang, J.; Comotti, M.; Schüth, F.; Schlögl, R.; Su, D.S. Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. Chem. Commun. 2007, 19, 1916–1918. [Google Scholar] [CrossRef]
- Lu, A.-H.H.; Nitz, J.-J.J.; Comotti, M.; Weidenthaler, C.; Schlichte, K.; Lehmann, C.W.; Terasaki, O.; Schüth, F. Spatially and Size Selective Synthesis of Fe-Based Nanoparticles on Ordered Mesoporous Supports as Highly Active and Stable Catalysts for Ammonia Decomposition. J. Am. Chem. Soc. 2010, 132, 14152–14162. [Google Scholar] [CrossRef]
- Ji, J.; Duan, X.; Qian, G.; Li, P.; Zhou, X.; Chen, D.; Yuan, W. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition. Catal. Today 2013, 216, 254–260. [Google Scholar] [CrossRef]
- Duan, X.; Qian, G.; Zhou, X.; Sui, Z.; Chen, D.; Yuan, W. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Appl. Catal. B Environ. 2011, 101, 189–196. [Google Scholar] [CrossRef]
- Li, L.; Jiang, R.; Chu, W.; Cang, H.; Chen, H.; Yan, J. Cobalt nanoparticles embedded in a porous carbon matrix as an efficient catalyst for ammonia decomposition. Catal. Sci. Technol. 2017, 7, 1363–1371. [Google Scholar] [CrossRef]
- Podila, S.; Driss, H.; Zaman, S.F.; Alhamed, Y.A.; Alzahrani, A.A.; Daous, M.A.; Petrov, L.A. Hydrogen generation by ammonia decomposition using Co/MgO-La2O3 catalyst: Influence of support calcination atmosphere. J. Mol. Catal. A Chem. 2016, 414, 130–139. [Google Scholar] [CrossRef]
- Varisli, D.; Kaykac, N.G. Hydrogen from ammonia over cobalt incorporated silicate structured catalysts prepared using different cobalt salts. Int. J. Hydrogen Energy 2016, 41, 5955–5968. [Google Scholar] [CrossRef]
- Yin, S.-F.; Zhang, Q.-H.; Xu, B.-Q.; Zhu, W.-X.; Ng, C.-F.; Au, C.-T. Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 2004, 224, 384–396. [Google Scholar] [CrossRef]
- Li, X.K.; Ji, W.J.; Zhao, J.; Wang, S.J.; Au, C.T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005, 236, 181–189. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Shen, J.; Sun, Y.; Liu, Z. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl. Catal. A Gen. 2008, 337, 138–147. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.; Ali, A.M.; Duan, M.; Zhu, W.; Zhang, H.; Chen, C.; Li, Y. Size structure-catalytic performance correlation of supported Ni/MCF-17 catalysts for COX-free hydrogen production. Chem. Commun. 2018, 54, 6364–6367. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, J.; Ge, Q.; Xu, H.; Li, W. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen. Appl. Catal. B Environ. 2008, 80, 98–105. [Google Scholar] [CrossRef]
- Inokawa, H.; Ichikawa, T.; Miyaoka, H. Catalysis of nickel nanoparticles with high thermal stability for ammonia decomposition. Appl. Catal. A Gen. 2015, 491, 184–188. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Z.H.; Wang, S.B.; Yao, X.D.; Yan, Z.F. Chromium oxide catalysts for COx-free hydrogen generation via catalytic ammonia decomposition. J. Mol. Catal. A Chem. 2009, 304, 71–76. [Google Scholar] [CrossRef]
- Hajduk, Š.; Dasireddy, V.D.B.C.; Likozar, B.; Dražić, G.; Orel, Z.C. COx-free hydrogen production via decomposition of ammonia over Cu–Zn-based heterogeneous catalysts and their activity/stability. Appl. Catal. B Environ. 2017, 211, 57–67. [Google Scholar] [CrossRef]
- Bradford, M.C.J.J.; Fanning, P.E.; Vannice, M.A. Kinetics of NH3 Decomposition over Well Dispersed Ru. J. Catal. 1997, 172, 479–484. [Google Scholar] [CrossRef]
- Egawa, C.; Nishida, T.; Naito, S.; Tamaru, K. Ammonia decomposition on (1 1 10) and (0 0 1) surfaces of ruthenium. J. Chem. Soc. Farady Trans. Phys. Chem. Condens. Phases 1984, 80, 1595–1604. [Google Scholar] [CrossRef]
- Dahl, S.; Törnqvist, E.; Chorkendorff, I. Dissociative adsorption of N2 on Ru(0001): A surface reaction totally dominated by steps. J. Catal. 2000, 192, 381–390. [Google Scholar] [CrossRef]
- Boisen, A.; Dahl, S.; Nørskov, J.K.; Christensen, C.H. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 2005, 230, 309–312. [Google Scholar] [CrossRef]
- Raróg, W.; Kowalczyk, Z.; Sentek, J.; Składanowski, D.; Zieliński, J. Effect of K, Cs and Ba on the kinetics of NH3 synthesis over carbon-based ruthenium catalysts. Catal. Lett. 2000, 68, 163–168. [Google Scholar] [CrossRef]
- Raróg-Pilecka, W.; Szmigiel, D.; Kowalczyk, Z.; Jodzis, S.; Zielinski, J. Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium. J. Catal. 2003, 218, 465–469. [Google Scholar] [CrossRef]
- Raróg-Pilecka, W.; Miśkiewicz, E.; Szmigiel, D.; Kowalczyk, Z. Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon. J. Catal. 2005, 231, 11–19. [Google Scholar] [CrossRef]
- Hill, A.K.; Torrente-Murciano, L. In-situ H2 production via low temperature decomposition of ammonia: Insights into the role of cesium as a promoter. Int. J. Hydrogen Energy 2014, 39, 7646–7654. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Guo, J.; Liu, L.; Wang, P.; Chang, F.; Wang, H.; Ju, X.; Chen, P. Effects of Alkaline Earth Metal Amides on Ru in Catalytic Ammonia Decomposition. J. Phys. Chem. C 2016, 120, 2822–2828. [Google Scholar] [CrossRef]
- Kishida, K.; Kitano, M.; Inoue, Y.; Sasase, M.; Nakao, T.; Tada, T.; Abe, H.; Niwa, Y.; Yokoyama, T.; Hara, M.; et al. Large Oblate Hemispheroidal Ruthenium Particles Supported on Calcium Amide as Efficient Catalysts for Ammonia Decomposition. Chem. A Eur. J. 2018, 24, 7976–7984. [Google Scholar] [CrossRef]
- Karim, A.M.; Prasad, V.; Mpourmpakis, G.; Lonergan, W.W.; Frenkel, A.I.; Chen, J.G.; Vlachos, D.G. Correlating particle size and shape of supported Ru/γ-Al2O3 catalysts with NH3 decomposition activity. J. Am. Chem. Soc. 2009, 131, 12230–12239. [Google Scholar] [CrossRef]
- Jacobsen, C.J.H.; Dahl, S.; Hansen, P.L.; Törnqvist, E.; Jensen, L.; Topsøe, H.; Prip, D.V.; Møenshaug, P.B.; Chorkendorff, I. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A Chem. 2000, 163, 19–26. [Google Scholar] [CrossRef]
- Szmigiel, D.; Bielawa, H.; Kurtz, M.; Hinrichsen, O.; Muhler, M.; Ra, W.; Jodzis, S.A.; Kowalczyk, Z.; Znak, L.; Zielí, J. The Kinetics of Ammonia Synthesis over Ruthenium-Based Catalysts: The Role of Barium and Cesium. J. Catal. 2002, 205, 205–212. [Google Scholar] [CrossRef]
- Ju, X.; Liu, L.; Zhang, X.; Feng, J.; He, T.; Chen, P. Highly Efficient Ru/MgO Catalyst with Surface-Enriched Basic Sites for Production of Hydrogen from Ammonia Decomposition. ChemCatChem 2019, 11, 4161–4170. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.F.; Xu, B.Q.; Zhu, W.X.; Ng, C.F.; Zhou, X.P.; Au, C.T. Carbon nanotubes-supported Ru catalyst for the generation of COx-free hydrogen from ammonia. Catal. Today 2004, 93–95, 27–38. [Google Scholar] [CrossRef]
- Ju, X.; Liu, L.; Yu, P.; Guo, J.; Zhang, X.; He, T.; Wu, G.; Chen, P. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B Environ. 2017, 211, 167–175. [Google Scholar] [CrossRef]
- Hu, Z.; Mahin, J.; Datta, S.; Bell, T.E.; Torrente-Murciano, L. Ru-Based Catalysts for H2 Production from Ammonia: Effect of 1D Support. Top. Catal. 2018, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.J.H.; Dahl, S.; Clausen, B.G.S.; Bahn, S.; Logadottir, A.; Nørskov, J.K. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 2001, 123, 8404–8405. [Google Scholar] [CrossRef]
- Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. MCM-41 supported CoMo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chem. Eng. J. 2012, 207–208, 103–108. [Google Scholar] [CrossRef]
- Ji, J.; Duan, X.; Qian, G.; Zhou, X.; Tong, G.; Yuan, W. Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy 2014, 39, 12490–12498. [Google Scholar] [CrossRef]
- Zhang, J.; Müller, J.O.; Zheng, W.; Wang, D.; Su, D.; Schlögl, R. Individual Fe-Co alloy nanoparticles on carbon nanotubes: Structural and catalytic properties. Nano Lett. 2008, 8, 2738–2743. [Google Scholar] [CrossRef]
- Simonsen, S.B.; Chakraborty, D.; Chorkendorff, I.; Dahl, S. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. Appl. Catal. A Gen. 2012, 447–448, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Sasmaz, E.; Mingle, K.; Lauterbach, J. High-throughput screening using Fourier-transform infrared imaging. Engineering 2015, 1, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Hendershot, J.; Reed, J.; Lasko, S.S.; Fellmann, M.-F.; Oskarsdottir, G.; Delgass, W.; Snively, C.M. A novel reactor system for high throughput catalyst testing under realistic conditions. Appl. Catal. A 2003, 254, 107–120. [Google Scholar] [CrossRef]
- Betancourt, P.; Rives, A.; Hubaut, R.; Scott, C.E.; Goldwasser, J. A study of the ruthenium-alumina system. Appl. Catal. A Gen. 1998, 170, 307–314. [Google Scholar] [CrossRef]
- Pyrz, W.; Vijay, R.; Binz, J.; Lauterbach, J.; Buttrey, D.J. Characterization of K-promoted Ru catalysts for ammonia decomposition discovered using high-throughput experimentation. Top. Catal. 2008, 50, 180–191. [Google Scholar] [CrossRef]
- Yin, S.F.; Xu, B.Q.; Zhou, X.P.; Au, C.T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A Gen. 2004, 277, 1–9. [Google Scholar] [CrossRef]
- Czekajło, Ł.; Lendzion-Bieluń, Z. Effect of preparation conditions and promoters on the structure and activity of the ammonia decomposition reaction catalyst based on nanocrystalline cobalt. Chem. Eng. J. 2016, 289, 254–260. [Google Scholar] [CrossRef]
- Foo, M.L.; Lee, W.-L.; Siegrist, T.; Lawes, G.; Ramirez, A.P.; Ong, N.P.; Cava, R.J. Electronic characterization of alkali ruthenium hollandites: KRu4O8, RbRu4O8 and Cs0.8Li0.2Ru4O8. Mater. Res. Bull. 2004, 39, 1663–1670. [Google Scholar] [CrossRef]
- Wang, C.; Sun, L.; Cao, Q.; Hu, B.; Huang, Z.; Tang, X. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 2010, 101, 598–605. [Google Scholar] [CrossRef]
- Laurita, G.; Grajczyk, R.; Stolt, M.; Coutinho, I.; Sleight, A.W.; Subramanian, M.A. Influence of Structural Disorder on Hollandites AxRu4O8 (A+ = K, Rb, Rb1-xNax). Inorg. Chem. 2016, 55, 3462–3467. [Google Scholar] [CrossRef]
- Lin, B.; Wang, R.; Yu, X.; Lin, J.; Xie, F.; Wei, K. Physicochemical characterization and H2-TPD study of alumina supported ruthenium catalysts. Catal. Lett. 2008, 124, 178–184. [Google Scholar] [CrossRef]
- Yunrui, Z.; Wanpeng, Z.; Fudong, L.; Jianbing, W.; Shaoxia, Y. Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution. Chemosphere 2007, 66, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Sellers, M.C.K.; Zussblatt, N.P.; Marsh, C.P. Potassium perruthenate-treated carbon nanotube sheets for flexible supercapacitors. Electrochem. Commun. 2012, 18, 58–61. [Google Scholar] [CrossRef]
- Yang, H.M. Characterization of Ammonia Decomposition Catalysts for Hydrogen Gneration; University of Delaware: Newark, DE, USA, 2008. [Google Scholar]
- Dahl, S.; Logadottir, A.; Egeberg, R.; Nielsen, J.H.; Chorkendorff, I.; Tornqvist, E.; Norskov, J.K. Role of steps in N-2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xu, H.; Li, W. Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Appl. Catal. A Gen. 2005, 296, 257–267. [Google Scholar] [CrossRef]
- Williams, T.; McCullough, K.; Lauterbach, J.A. Enabling Catalyst Discovery through Machine Learning and High-Throughput Experimentation. Chem. Mater. 2020, 32, 157–165. [Google Scholar] [CrossRef]
- Nagaoka, K.; Eboshi, T.; Abe, N.; Miyahara, S.; Honda, K.; Sato, K. Influence of basic dopants on the activity of Ru/Pr6O11 for hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy 2014, 39, 20731–20735. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ji, J.; Qian, G.; Yuan, W.; Duan, X.; Zhou, X.; Chen, D. Structure sensitivity of ammonia decomposition over Ni catalysts: A computational and experimental study. Fuel Process. Technol. 2012, 108, 112–117. [Google Scholar]
- Zhou, S.; Lin, S.; Guo, H. First-Principles Insights into Ammonia Decomposition Catalyzed by Ru Clusters Anchored on Carbon Nanotubes: Size Dependence and Interfacial Effects. J. Phys. Chem. C 2018, 122, 9091–9100. [Google Scholar] [CrossRef]
- Heracleous, E.; Lemonidou, A.A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. J. Catal. 2006, 237, 162–174. [Google Scholar] [CrossRef]
- Hansen, T.W.; Wagner, J.B.; Hansen, P.L.; Dahl, S.; Topsøe, H.; Jacobsen, C.J.H. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 2001, 294, 1508–1510. [Google Scholar] [CrossRef] [PubMed]
- Ganley, J.C.; Thomas, F.S.; Seebauer, E.G.; Masel, R.I. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia. Catal. Lett. 2004, 96, 117–122. [Google Scholar] [CrossRef]
- Prasad, V.; Karim, A.M.; Arya, A.; Vlachos, D.G. Assessment of overall rate expressions and multiscale, microkinetic model uniqueness via experimental data injection: Ammonia decomposition on Ru/γ-Al2O3 for hydrogen production. Ind. Eng. Chem. Res. 2009, 48, 5255–5265. [Google Scholar] [CrossRef]
- Al-Saleh, M.A.; Hossain, M.M.; Shalabi, M.A.; Kimura, T.; Inui, T. Hydrogen spillover effects on Pt-Rh modified Co-clay catalysts for heavy oil upgrading. Appl. Catal. A Gen. 2003, 253, 453–459. [Google Scholar] [CrossRef]
- Lin, P.Y.; Meng, M.; Yuan, J.J.; Yu, S.M.; Fu, Y.L. Spillover effect and CO oxidation activity on the supported noble metals-metal oxides catalysts. Stud. Surf. Sci. Catal. 1997, 112, 201–210. [Google Scholar]
- Wang, L.; Yin, C.; Yang, R.T. Selective catalytic reduction of nitric oxide with hydrogen on supported Pd: Enhancement by hydrogen spillover. Appl. Catal. A Gen. 2016, 514, 35–42. [Google Scholar] [CrossRef]
- Nabaho, D.; Niemantsverdriet, J.W.; Claeys, M.; van Steen, E. Hydrogen spillover in the Fischer-Tropsch synthesis: An analysis of platinum as a promoter for cobalt-alumina catalysts. Catal. Today 2016, 261, 17–27. [Google Scholar] [CrossRef]
- Hill, A.K.; Torrente-Murciano, L. Low temperature H2 production from ammonia using ruthenium-based catalysts: Synergetic effect of promoter and support. Appl. Catal. B Environ. 2015, 172–173, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Falicov, L.M.; And, T.; Somorjai, G.A. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence. Chemistry 1985, 82, 2207–2211. [Google Scholar] [CrossRef] [Green Version]
- Hammer, B.; Nørskov, J.K. Theoretical surface science and catalysis—calculations and concepts. Impact Surf. Sci. Catal. 2000, 45, 71–129. [Google Scholar]
- Wang, Y.; Zhu, J.H.; Huang, W.Y. Synthesis and characterization of potassium-modified alumina superbases. Phys. Chem. Chem. Phys. 2001, 3, 2537–2543. [Google Scholar] [CrossRef]
- Weisz, P.B.; Prater, C.D. Interpretation of Measurements in Experimental Catalysis. Adv. Catal. 1954, 6, 143–196. [Google Scholar]
- Reid, R. Chapter 11: Diffusion Coefficients. In The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Bartholomew, C.H. Hydrogen adsorption on supported cobalt, iron, and nickel. Catal. Lett. 1990, 7, 27–51. [Google Scholar] [CrossRef]
- Choudhary, T.V.; Sivadinarayana, C.; Goodman, D.W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197–201. [Google Scholar] [CrossRef]
- Di Carlo, A.; Vecchione, L.; del Prete, Z. Ammonia decomposition over commercial Ru/Al2O3 catalyst: An experimental evaluation at different operative pressures and temperatures. Int. J. Hydrogen Energy 2014, 39, 808–814. [Google Scholar] [CrossRef]
- Tsai, W.; Weinberg, W.H. Steady-state decomposition of ammonia on the Ru(001) surface. J. Phys. Chem. 1987, 91, 5302–5307. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway. Appl. Catal. B Environ. 2018, 236, 162–170. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.M.; Widmann, D.; Olesen, S.E.; Chorkendorff, I.; Biskupek, J.; Behm, R.J. Selective CO Methanation on Ru/TiO2 Catalysts: Role and Influence of Metal-Support Interactions. ACS Catal. 2015, 5, 6753–6763. [Google Scholar] [CrossRef]
- Chin, S.Y.; Williams, C.T.; Amiridis, M.D. FTIR studies of CO adsorption on Al2O3- and SiO2-supported Ru catalysts. J. Phys. Chem. B 2006, 110, 871–882. [Google Scholar] [CrossRef]
- Solymosi, F.; Raskó, J. An infrared study of the influence of CO adsorption on the topology of supported ruthenium. J. Catal. 1989, 115, 107–119. [Google Scholar] [CrossRef]
- Cao, S.; Monnier, J.R.; Regalbuto, J.R. Alkali promotion of alumina-supported ruthenium catalysts for hydrogenation of levulinic acid to γ-valerolactone. J. Catal. 2017, 347, 72–78. [Google Scholar] [CrossRef]
- Waghray, A.; Wang, J.; Oukaci, R.; Blackmond, D.G. Influence of alkali promoters in the selective hydrogenation of 3-methyl-2-butenal over Ru/SiO2 catalysts. J. Phys. Chem. 1992, 96, 5954–5959. [Google Scholar] [CrossRef]
- Bradshaw, A.M.; Pritchard, J. Infrared spectra of carbon monoxide chemisorbed on metal films. A comparative study of copper, silver, gold, iron, cobalt and nickel. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1970, 316, 169–183. [Google Scholar]
- Mo, X.; Gao, J.; Umnajkaseam, N.; Goodwin, J.G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: Effect on adsorption and reaction. J. Catal. 2009, 267, 167–176. [Google Scholar] [CrossRef]
- Ichikawa, M.; Fukushima, T. Infrared studies of metal additive effects on CO chemisorption modes on SiO2-supported Rh-Mn, -Ti, and -Fe catalysts. J. Phys. Chem. 1985, 89, 1564–1567. [Google Scholar] [CrossRef]
- DePaola, R.A.; Hrbek, J.; Hoffmann, F.M. Potassium promoted C-O bond weakening on Ru(001). I. Through-metal interaction at low potassium precoverage. J. Chem. Phys. 1985, 82, 2484–2498. [Google Scholar] [CrossRef]
- Politano, A.; Chiarello, G.; Benedek, G.; Chulkov, E.V.; Echenique, P.M. Vibrational spectroscopy and theory of alkali metal adsorption and co-adsorption on single-crystal surfaces. Surf. Sci. Rep. 2013, 68, 305–389. [Google Scholar] [CrossRef]
- Hoffmann, F.M.; de Paola, R.A. Anomalous C-O bond weakening of side-on-bonded carbon monoxide on a potassium-promoted Ru(001) surface. Phys. Rev. Lett. 1984, 52, 1697–1700. [Google Scholar] [CrossRef]
- Cao, S.; Monnier, J.R.; Williams, C.T.; Diao, W.; Regalbuto, J.R. Rational nanoparticle synthesis to determine the effects of size, support, and K dopant on Ru activity for levulinic acid hydrogenation to γ-valerolactone. J. Catal. 2015, 326, 69–81. [Google Scholar] [CrossRef]
- Tom, H.W.K.; Mate, C.M.; Zhu, X.D.; Crowell, J.E.; Heinz, T.F.; Somorjai, G.A.; Shen, Y.R. Surface studies by optical second-harmonic generation: The adsorption of O2, CO, and sodium on the Rh(111) surface. Phys. Rev. Lett. 1984, 52, 348–351. [Google Scholar] [CrossRef]
- Garfunkel, E.L.; Crowell, J.E.; Somorjai, G.A. The strong influence of potassium on the adsorption of CO on platinum surfaces. A thermal desorption spectroscopy and high-resolution electron energy loss spectroscopy study. J. Phys. Chem. 1982, 86, 310–313. [Google Scholar] [CrossRef]
- Wang, S.J.; Yin, S.F.; Li, L.; Xu, B.Q.; Ng, C.F.; Au, C.T. Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia. Appl. Catal. B Environ. 2004, 52, 287–299. [Google Scholar] [CrossRef]
Catalyst | H2 Uptake (μmol H2/g) | TOF (s−1) | Ea (kJ/mol) | ||
---|---|---|---|---|---|
300 °C | 350 °C | 400 °C | |||
4 Ru | 6.50 | 0.00 | 0.00 | 0.14 | 125.2 ± 8.9 |
4,12 RuK | 4.70 | 0.13 | 0.26 | 0.33 | 65.7 ± 7.7 |
3,1,12 RuSrK | 1.90 | 0.16 | 0.43 | 0.88 | 149.6 ± 4.1 |
2,2,12 RuSrK | 0.90 | 0.38 | 0.81 | 1.38 | 153.7 ± 2.4 |
1,3,12 RuSrK | 0.75 | 0.47 | 1.10 | 1.78 | 156.4 ± 1.6 |
3,1,12 RuFeK | 0.76 | 0.00 | 0.35 | 0.97 | 248.1 ± 3.0 |
2,2,12 RuFeK | 0.10 | 0.00 | 0.03 | 0.41 | 226.6 ± 2.9 |
1,3,12 RuFeK | 1.20 | 0.00 | 0.00 | 0.28 | 250.9 ± 7.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCullough, K.; Chiang, P.-H.; Jimenez, J.D.; Lauterbach, J.A. Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition. Materials 2020, 13, 1869. https://doi.org/10.3390/ma13081869
McCullough K, Chiang P-H, Jimenez JD, Lauterbach JA. Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition. Materials. 2020; 13(8):1869. https://doi.org/10.3390/ma13081869
Chicago/Turabian StyleMcCullough, Katherine, Pei-Hua Chiang, Juan D. Jimenez, and Jochen A. Lauterbach. 2020. "Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition" Materials 13, no. 8: 1869. https://doi.org/10.3390/ma13081869
APA StyleMcCullough, K., Chiang, P. -H., Jimenez, J. D., & Lauterbach, J. A. (2020). Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition. Materials, 13(8), 1869. https://doi.org/10.3390/ma13081869