Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Yamada, N.; Maruya, K.; Yamaguchi, Y.; Cao, X.; Ninomiya, Y. p- to n-Type Conversion and Nonmetal–Metal Transition of Lithium-Inserted Cu3N Films. Chem. Mater. 2015, 27, 8076–8083. [Google Scholar] [CrossRef]
- Khan, S.A.; Tiwari, G.; Tripathi, R.P.; Alvi, M.A.; Khan, Z.H.; Alagel, F.A. Structural, Optical and Electrical Characterization of Polycrystalline Ga0.15Te0.85−xZnx Nano-Structured Thin Films. Adv. Sci. Lett. 2014, 20, 1715–1718. [Google Scholar] [CrossRef]
- Han, F.; Kambala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A Gen. 2009, 359, 25–40. [Google Scholar] [CrossRef]
- Gamoudi, S.; Srasra, E. Adsorption of organic dyes by HDPy+-modified clay: Effect of molecular structure on the adsorption. J. Mol. Struct. 2019, 1193, 522–531. [Google Scholar] [CrossRef]
- Han, J.; Jun, B.-M.; Heo, J.; Kim, S.; Yoona, Y.; Park, C.M. Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure. Ecotoxicol. Environ. Saf. 2019, 182, 109396. [Google Scholar] [CrossRef]
- Fu, Y.; Liang, W.; Guo, J.; Tang, H.; Liu, S. MoS2 quantum dots decorated g-C3N4/Ag heterojunctions for enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2018, 430, 234–242. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yang, W.; Li, F.; Zhao, J.; Liu, R.; Liu, S.; Li, B. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity. J. Hazard. Mater. 2015, 292, 126–136. [Google Scholar] [CrossRef]
- Peng, L.; Xie, T.; Lu, Y.; Fan, H.; Wang, D. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 2010, 12, 8033–8041. [Google Scholar] [CrossRef]
- Qu, Y.; Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580. [Google Scholar] [CrossRef]
- He, H.; Lin, J.; Fu, W.; Wang, X.; Wang, H.; Zeng, Q.; Gu, Q. MoS2/TiO2 edge-on heterojunction for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600464. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; He, H.; Ye, Z. Large-area ZnO/MoS2 heterojunction grown by pulsed laser deposition. Mater. Lett. 2019, 253, 187–190. [Google Scholar] [CrossRef]
- Ganatra, R.; Zhang, Q. Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano 2014, 8, 4074–4099. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhu, W.; Gong, C.M.; Xiao, J.; Zhu, L.; Wang, Z.; Ma, S. Effect of Deposition Pressure on the Microstructure and Optical Band Gap of Molybdenum Disulfide Films Prepared by Magnetron Sputtering. Coatings 2019, 9, 570. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Guo, P.; Liu, J.; Zhang, D.; Ke, P.; Wang, A.; Zhu, Y. Friction and wear mechanism of MoS2/C composite coatings under atmospheric environment. Tribol. Lett. 2017, 65, 79. [Google Scholar] [CrossRef]
- Chen, Q.; Li, L.L.; Peeters, F.M. Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges. Phys. Rev. B 2018, 97, 085437. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, L.L.; Peeters, F.M. Inner and outer ring states of MoS2 quantum rings: Energy spectrum, charge and spin currents. J. Appl. Phys. 2019, 125, 244303. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Chen, F.; Su, W.; Ding, S.; Fu, L. Growth and optical properties of large-scale MoS2 films with different thickness. Ceram. Int. 2019, 45, 15091–15096. [Google Scholar] [CrossRef]
- Baek, S.H.; Choi, Y.; Choi, W. Large-Area Growth of Uniform Single-Layer MoS2 Thin Films by Chemical Vapor Deposition. Nanoscale Res. Lett. 2015, 10, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, G.; Wang, L. Low humidity-sensitivity of MoS2/Pb nanocomposite coatings. Wear 2016, 350, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Zhang, G.; Wang, L.; Wu, G. Exploring the Tribophysics and Tribochemistry of MoS2 by Sliding MoS2/Ti Composite Coating Under Different Humidity. Tribol. Lett. 2017, 65, 38. [Google Scholar] [CrossRef]
- Phung, H.N.T.; Tran, V.N.K.; Nguyen, L.T.; Phan, L.K.T.; Duong, P.A.; Le, H.V.T. Investigating visible-photocatalytic activity of MoS2/TiO2 heterojunction thin films at various MoS2 deposition times. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Phung, H.N.T.; Truong, N.D.; Duong, P.A. Influence of MoS2 deposition time on the photocatalytic activity of MoS2/V, N co-doped TiO2 heterojunction thin film in the visible light region. Curr. Appl. Phys. 2018, 18, 737–743. [Google Scholar] [CrossRef]
- Yu, A.; Ma, Y.; Chen, A.; Li, Y.; Zhou, Y.; Wang, Z.; Zhang, J.; Chu, L.; Yang, J.; Li, X. Thermal stability and optical properties of Sc-doped copper nitride films. Vaccum 2017, 141, 243–248. [Google Scholar] [CrossRef]
- Cong, Y.; Ge, Y.; Zhang, T.; Wang, Q.; Shao, M.; Zhang, Y. Fabrication of Z-Scheme Fe2O3–MoS2–Cu2O Ternary Nanofilm with Significantly Enhanced Photoelectrocatalytic Performance. Ind. Eng. Chem. Res. 2018, 57, 881–890. [Google Scholar] [CrossRef]
- Pierson, J.; Horwat, D. Addition of silver in copper nitride films deposited by reactive magnetron sputtering. Scr. Mater. 2008, 58, 568–570. [Google Scholar] [CrossRef]
- Li, J.; Yao, C.; Kong, X.; Li, Z.; Jiang, M.; Zhang, F.; Lei, X. Boosting Hydrogen Production by Electrooxidation of Urea over 3D Hierarchical Ni4N/Cu3N Nanotube Arrays. ACS Sustain. Chem. Eng. 2019, 7, 13278–13285. [Google Scholar] [CrossRef]
- Jiang, A.; Qi, M.; Xiao, J. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review. J. Mater. Sci. Technol. 2018, 34, 1467–1473. [Google Scholar] [CrossRef]
- Xiao, J.; Qi, M.; Cheng, Y.; Jiang, A.; Zeng, Y.; Ma, J. Influences of nitrogen partial pressure on the optical properties of copper nitride films. RSC Adv. 2016, 6, 40895–40899. [Google Scholar] [CrossRef]
- Cremer, R.; Witthaut, M.; Trappe, C.; Laurenzis, M.; Winkler, O.; Kurz, H.; Neuschütz, D. Deposition and Characterization of Metastable Cu3N Layers for Applications in Optical Data Storage. Microchim. Acta 2000, 133, 299–302. [Google Scholar] [CrossRef]
- Jiang, A.; Xiao, J.; Gong, C.; Wang, Z.; Ma, S. Structure and electrical transport properties of Pb-doped copper nitride (Cu3N:Pb) films. Vaccum 2019, 164, 53–57. [Google Scholar] [CrossRef]
- Soares, L.; Alves, A. Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis. Mater. Lett. 2018, 211, 339–342. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, G.-J.; Ba, Y.; Wang, T.; Wang, X.; Liu, Z. Microstructure and tribological properties of MoS2+Zr composite coatings in high humidity environment. Appl. Surf. Sci. 2016, 367, 140–146. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Cao, X.; Gong, C.; Jiang, A.; Cheng, Y.; Xiao, J. Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance. Materials 2020, 13, 1873. https://doi.org/10.3390/ma13081873
Zhu L, Cao X, Gong C, Jiang A, Cheng Y, Xiao J. Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance. Materials. 2020; 13(8):1873. https://doi.org/10.3390/ma13081873
Chicago/Turabian StyleZhu, Liwen, Xiu Cao, Chenyang Gong, Aihua Jiang, Yong Cheng, and Jianrong Xiao. 2020. "Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance" Materials 13, no. 8: 1873. https://doi.org/10.3390/ma13081873
APA StyleZhu, L., Cao, X., Gong, C., Jiang, A., Cheng, Y., & Xiao, J. (2020). Preparation of Cu3N/MoS2 Heterojunction through Magnetron Sputtering and Investigation of Its Structure and Optical Performance. Materials, 13(8), 1873. https://doi.org/10.3390/ma13081873