Nanostructure Characteristics of Al3Sc1−xZrx Nanoparticles and Their Effects on Mechanical Property and SCC Behavior of Al–Zn–Mg Alloys
Abstract
:1. Instruction
2. Materials and Methods
3. Results
3.1. Nanostructure and Atom Distribution of Al3Sc1−xZrx Particles
3.2. Strain-Stress Curves and Microstructure Characteristics
4. Discussion
4.1. Explanation of the Excellent Mechanical Properties of Al3Sc1−xZrx Nanoparticles
4.1.1. Orowan Strengthening
4.1.2. Hall–Petch Strengthening
4.2. Interpretation of the Enhanced SCC Resistance by Al3Sc1−xZrx Nanoparticles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ASM. Available online: http://www.aerospacemetals.com/aluminum-distributor.html (accessed on 12 April 2020).
- Wang, Y.L.; Jiang, H.C.; Li, Z.M.; Yan, D.S.; Zhang, D.; Rong, L.J. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al–Zn–Mg alloy. J. Mater. Sci. Technol. 2018, 34, 1250–1257. [Google Scholar] [CrossRef]
- Ashkenazi, D. How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technol. Forecast. Soc. Chang. 2019, 143, 101–113. [Google Scholar] [CrossRef]
- Rao, A.C.U.; Vasu, V.; Govindaraju, M.; Srinadh, K.V.S. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2016, 26, 1447–1471. [Google Scholar] [CrossRef]
- Wang, S.; Luo, B.; Bai, Z.; Zheng, Y.; He, C.; Jiang, G. Revealing the aging time on the precipitation process and stress corrosion properties of 7N01 aluminium alloy. Vacuum 2020, 176, 109311. [Google Scholar] [CrossRef]
- Kannan, M.B.; Srinivasan, P.B.; Raja, V.S. Stress corrosion cracking (SCC) of aluminium alloys. Stress Corros. Crack. Theory Pract. 2011, 307–340. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Du, K.T.; Bor, H.Y.; Liu, G.H.; Lee, S.L. The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys. Mater. Chem. Phys. 2020, 247, 122853. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, D.; Zhang, W.; Qiu, C.; Liang, G.; Chen, J. Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion. J. Alloys Compd. 2020, 819, 1–10. [Google Scholar] [CrossRef]
- Entringer, J.; Meisnar, M.; Reimann, M.; Blawert, C.; Zheludkevich, M.; dos Santos, J.F. The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al–Cu–Li alloy. Mater. Lett. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Oger, L.; Malard, B.; Odemer, G.; Peguet, L.; Blanc, C. Influence of dislocations on hydrogen diffusion and trapping in an Al–Zn–Mg aluminium alloy. Mater. Des. 2019, 180, 107901. [Google Scholar] [CrossRef]
- Jang, H.W.; Lee, S.E.; Hong, J.W. Molecular dynamics evaluation of the effects of zinc on the mechanical properties of aluminum alloys. Comput. Mater. Sci. 2019, 159, 66–72. [Google Scholar] [CrossRef]
- Knight, S.P.; Pohl, K.; Holroyd, N.J.H.; Birbilis, N.; Rometsch, P.A.; Muddle, B.C.; Goswami, R.; Lynch, S.P. Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys. Corros. Sci. 2015, 98, 50–62. [Google Scholar] [CrossRef]
- Bobby Kannan, M.; Raja, V.S. Enhancing stress corrosion cracking resistance in Al–Zn–Mg–Cu–Zr alloy through inhibiting recrystallization. Eng. Fract. Mech. 2010, 77, 249–256. [Google Scholar] [CrossRef]
- Chen, K.H.; Fang, H.C.; Zhang, Z.; Chen, X.; Liu, G. Effect of of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A 2008, 497, 426–431. [Google Scholar] [CrossRef]
- Xie, P.; Chen, S.; Chen, K.; Jiao, H.; Huang, L.; Zhang, Z.; Yang, Z. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al–Zn–Mg–Cu aluminum alloy by step-quench and aging heat treatment. Corros. Sci. 2019, 161, 108184. [Google Scholar] [CrossRef]
- Ren, J.; Wang, R.; Peng, C.; Zhang, H.; Xu, C.; Wu, Y.; Feng, Y. Effect of repetitious retrogression and re-aging treatment on the microstructure, strength and corrosion behavior of powder hot-extruded 7055 Al alloy. Mater. Charact. 2020, 162, 110190. [Google Scholar] [CrossRef]
- Li, G.; Zhao, N.; Liu, T.; Li, J.; He, C.; Shi, C.; Liu, E.; Sha, J. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Mater. Sci. Eng. A 2014, 617, 219–227. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; He, Z. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J. Alloys Compd. 2012, 530, 71–80. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Duan, J.; Zhao, K.; Tang, B.; He, Z. Evolution of microstructure and properties in a new type 2 mm Al–Zn–Mg–Sc–Zr alloy sheet. J. Alloys Compd. 2012, 517, 118–126. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; Hu, J.; He, Z. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros. Sci. 2012, 65, 288–298. [Google Scholar] [CrossRef]
- Wang, M.; Huang, L.; Chen, K.; Liu, W. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al–Zn–Mg–Cu–Zr alloy. Micron 2018, 104, 80–88. [Google Scholar] [CrossRef]
- Davydov, V.G.; Rostova, T.D.; Zakharov, V.V.; Filatov, Y.A.; Yelagin, V.I. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater. Sci. Eng. A 2000, 280, 30–36. [Google Scholar] [CrossRef]
- Deng, Y.; Peng, B.; Xu, G.; Pan, Q.; Ye, R.; Wang, Y.; Lu, L.; Yin, Z. Stress corrosion cracking of a high-strength friction-stir-welded joint of an Al–Zn–Mg–Zr alloy containing 0.25wt.% Sc. Corros. Sci. 2015, 100, 57–72. [Google Scholar] [CrossRef]
- Song, M.; He, Y.H. Investigation of primary Al3(Sc,Zr) particles in Al–Sc–Zr alloys. Mater. Sci. Technol. 2011, 27, 431–433. [Google Scholar] [CrossRef]
- Liu, L.; Cui, X.Y.; Jiang, J.T.; Zhang, B.; Nomoto, K.; Zhen, L.; Ringer, S.P. Segregation of the major alloying elements to Al3(Sc,Zr) precipitates in an Al–Zn–Mg–Cu–Sc–Zr alloy. Mater. Charact. 2019, 157, 109898. [Google Scholar] [CrossRef]
- Tolley, A.; Radmilovic, V.; Dahmen, U. Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys. Scr. Mater. 2005, 52, 621–625. [Google Scholar] [CrossRef]
- Forbord, B.; Lefebvre, W.; Danoix, F.; Hallem, H.; Marthinsen, K. Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scr. Mater. 2004, 51, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Yin, Z.; Pan, Q.; Xu, G.; Duan, Y.; Wang, Y. Nano-structure evolution of secondary Al3(Sc1−xZrx) particles during superplastic deformation and their effects on deformation mechanism in Al–Zn–Mg alloys. J. Alloys Compd. 2017, 695, 142–153. [Google Scholar] [CrossRef]
- Senkov, O.N.; Shagiev, M.R.; Senkova, S.V.; Miracle, D.B. Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008, 56, 3723–3738. [Google Scholar] [CrossRef]
- GB 15970.7-2000. National Standard of China, Corrosion of Metals and Alloys-Stress Corrosion Testing—Slow Strain Rate Testing; The State Bureau of Quality and Technical Supervision: Beijing, China, 2000. [Google Scholar]
- Conde, A.; Fernandez, B.J.; Damborenea, J.J. Characterization of the SCC behaviour of 8090 Al–Li alloy by means of the slow-strain-rate technique. Corros. Sci. 1998, 40, 91–102. [Google Scholar] [CrossRef] [Green Version]
- ASTM G129-00. Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Voorhees, P.W. Scandium overtakes zirconium. Nat. Mater. 2006, 5, 435–436. [Google Scholar] [CrossRef]
- Hansen, N. Hall-petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Bonetti, E.; Pasquini, L.; Sampaolesi, E. The influence of grain size on the mechanical properties of nanocrystalline aluminium. Nanostructured Mater. 1997, 9, 611–614. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Yang, Z.; Chai, W.; Chen, J.; Ye, L.; Tang, J. Effect of minor Ge addition on microstructure and localized corrosion behavior of Al–Zn–Mg alloy sheet. Mater. Charact. 2019, 156, 109837. [Google Scholar] [CrossRef]
- Wu, L.; Wang, W.; Hsu, Y.; Trong, S. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J. Alloys Compd. 2008, 456, 163–169. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef]
- Wloka, J.; Virtanen, S. Influence of scandium on the pitting behaviour of Al–Zn–Mg–Cu alloys. Acta Mater. 2007, 55, 6666–6672. [Google Scholar] [CrossRef]
- Cavanaugh, M.K.; Birbilis, N.; Buchheit, R.G.; Bovard, F. Investigating localized corrosion susceptibility arising from Sc containing intermetallic Al3Sc in high strength Al-alloys. Scr. Mater. 2007, 56, 995–998. [Google Scholar] [CrossRef]
- Wang, Z.T.; Tian, R.Z. Handbook of Aluminum Alloy and Its Working, 3rd ed.; Central South University: Changsha, China, 2000. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Yang, Z.; Zhang, G. Nanostructure Characteristics of Al3Sc1−xZrx Nanoparticles and Their Effects on Mechanical Property and SCC Behavior of Al–Zn–Mg Alloys. Materials 2020, 13, 1909. https://doi.org/10.3390/ma13081909
Deng Y, Yang Z, Zhang G. Nanostructure Characteristics of Al3Sc1−xZrx Nanoparticles and Their Effects on Mechanical Property and SCC Behavior of Al–Zn–Mg Alloys. Materials. 2020; 13(8):1909. https://doi.org/10.3390/ma13081909
Chicago/Turabian StyleDeng, Ying, Ziang Yang, and Guo Zhang. 2020. "Nanostructure Characteristics of Al3Sc1−xZrx Nanoparticles and Their Effects on Mechanical Property and SCC Behavior of Al–Zn–Mg Alloys" Materials 13, no. 8: 1909. https://doi.org/10.3390/ma13081909
APA StyleDeng, Y., Yang, Z., & Zhang, G. (2020). Nanostructure Characteristics of Al3Sc1−xZrx Nanoparticles and Their Effects on Mechanical Property and SCC Behavior of Al–Zn–Mg Alloys. Materials, 13(8), 1909. https://doi.org/10.3390/ma13081909