Relevant Design Aspects to Improve the Stability of Titanium Dental Implants
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindquist, L.W.; Rockler, B.; Carlsson, G.E. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J. Prosthet. Dent. 1988, 59, 59–63. [Google Scholar] [CrossRef]
- Nevins, M.; Langer, B. The successful application of osseointegrated implants to the posterior jaw: A long-term retrospective study. Int. J. Oral Maxillofac. Implant. 1993, 8, 428–432. [Google Scholar]
- Fugazzotto, P.A.; Gulbransen, H.J.; Wheeler, S.L.; Lindsay, J.A. The use of IMZ osseointegrated implants in partially and completely edentulous patients: Success and failure rates of 2,023 implant cylinders up to 60+ months in function. Int. J. Oral Maxillofac. Implant. 1993, 8, 617–621. [Google Scholar]
- Buser, D.; Sennerby, L.; De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol. 2000 2016, 73, 7–21. [Google Scholar] [CrossRef]
- Buser, D.; Chappuis, V.; Belser, U.C.; Chen, S. Implant placement post extraction in esthetic single tooth sites: When immediate, when early, when late? Periodontol. 2000 2016, 73, 84–102. [Google Scholar] [CrossRef]
- Slagter, K.W.; Hartog, L.D.; Bakker, N.A.; Vissink, A.; Meijer, H.J.; Raghoebar, G.M. Immediate Placement of Dental Implants in the Esthetic Zone: A Systematic Review and Pooled Analysis. J. Periodontol. 2014, 85, e241–e250. [Google Scholar] [CrossRef]
- Blanco-Carrion, J.; Carral, C.; Argibay, O.; Liñares, A. Implant placement in fresh extraction sockets. Periodontol. 2000 2019, 79, 151–167. [Google Scholar] [CrossRef]
- Chen, S.T.; Buser, D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int. J. Oral Maxillofac. Implant. 2009, 24, 186–217. [Google Scholar]
- Esposito, M.; Grusovin, M.G.; Polyzos, I.P.; Felice, P.; Worthington, H.V. Timing of implant placement after tooth extraction: Immediate, immediate-delayed or delayed implants? A Cochrane systematic review. Eur. J. Oral Implant. 2010, 3, 189–205. [Google Scholar]
- Lang, N.P.; Pun, L.; Lau, K.Y.; Li, K.Y.; Wong, M.C. A systematic review on survival and success rates of implants placed immediately into fresh extraction sockets after at least 1 year. Clin. Oral Implants Res. 2012, 23 (Suppl. 5), 39–66. [Google Scholar] [CrossRef]
- Huynh-Ba, G.; Oates, T.W.; Williams, M.A.H. Immediate loading vs. early/conventional loading of immediately placed implants in partially edentulous patients from the patients’ perspective: A systematic review. Clin. Oral Implant. Res. 2018, 29, 255–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallucci, G.O.; Hamilton, A.; Zhou, W.; Buser, D.; Chen, S. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin. Oral Implant. Res. 2018, 29, 106–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerle, C.H.F.; Glauser, R. Clinical evaluation of dental implant treatment. Periodontol. 2000 2004, 34, 230–239. [Google Scholar] [CrossRef]
- Becker, C.M.; Wilson, T.G., Jr.; Jensen, O.T. Minimum Criteria for Immediate Provisionalization of Single-Tooth Dental Implants in Extraction Sites: A 1-Year Retrospective Study of 100 Consecutive Cases. J. Oral Maxillofac. Surg. 2011, 69, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Grusovin, M.G.; Maghaireh, H.; Worthington, H.V. Interventions for replacing missing teeth: Different times for loading dental implants. Cochrane Database Syst. Rev. 2013, 2013, CD003878. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Climent, M.; Santos-García, R.; Jaramillo-Santos, R.; Romero-Ruiz, M.M.; Fernández-Palacín, A.; Lázaro-Calvo, P.; Bullón, P.; Ríos-Santos, J.V. Assessment of Osstell ISQ’s reliability for implant stability measurement: A cross-sectional clinical study. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e877–e882. [Google Scholar] [CrossRef]
- Brizuela, A.; Alvarez-Arenal, A.; Gil, F.J.; Herrero-Climent, M.; Prado, D.C.; Chento-Valiente, Y.; Diéguez, M. Relationship Between Insertion Torque and Resonance Frequency Measurements, Performed by Resonance Frequency Analysis, in Micromobility of Dental Implants. Implant. Dent. 2015, 24, 607–611. [Google Scholar] [CrossRef]
- Romanos, G.E.; Basha-Hijazi, A.; Gupta, B.; Ren, Y.F.; Malmstrom, H. Role of clinician’s experience and implant design on implant stability. An ex vivo study in artificial soft bones. Clin. Implant Dent Relat. Res. 2014, 16, 166–171. [Google Scholar] [CrossRef]
- Dos Santos, M.V.; Elias, C.N.; Lima, J.H.C. The Effects of Superficial Roughness and Design on the Primary Stability of Dental Implants. Clin. Implant. Dent. Relat. Res. 2009, 13, 215–223. [Google Scholar] [CrossRef]
- . Ríos-Santos, J.V.; Menjívar-Galán, A.M.; Herrero-Climent, M.; Rios-Carrasco, B.; Fernández-Palacín, A.; Pérez, R.; Gil, F.J. Unravelling the effect of macro and microscopic design of dental implants on osseointegration: A randomised clinical study in minipigs. J. Mater. Sci. Mater. Electron. 2018, 29, 99. [Google Scholar] [CrossRef]
- Karl, M.; Irastorza-Landa, A. Does implant design affect primary stability in extraction sites? Quintessence Int. 2017, 48, 219–224. [Google Scholar] [PubMed]
- Delgado-Ruiz, R.A.; Calvo-Guirado, J.L. Effects of occlusal forces on the peri-implant-bone interface stability. Periodontol. 2000 2019, 81, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Dávila, E.; Ortiz-Hernández, M.; Perez, R.A.; Herrero-Climent, M.; Cerrolaza, M.; Gil, F.J. Crestal module design optimization of dental implants: Finite element analysis and in vivo studies. J. Mater. Sci. Mater. Electron. 2019, 30, 90. [Google Scholar] [CrossRef] [PubMed]
- Trisi, P.; Berardini, M.; Falco, A.; Vulpiani, M.P. Effect of Implant Thread Geometry on Secondary Stability, Bone Density, and Bone-to-Implant Contact. Implant. Dent. 2015, 24, 384–391. [Google Scholar] [CrossRef]
- Lan, T.-H.; Du, J.-K.; Pan, C.-Y.; Lee, H.-E.; Chung, W.-H. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin. Oral Investig. 2011, 16, 363–369. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Namgung, C.; Lee, J.-H.; Lim, Y.-J. The influence of thread geometry on implant osseointegration under immediate loading: A literature review. J. Adv. Prosthodont. 2014, 6, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Steigenga, J.T.; Al-Shammari, K.F.; Nociti, F.H.; Misch, C.E.; Wang, H.-L. Dental implant design and its relationship to long-term implant success. Implant. Dent. 2003, 12, 306–317. [Google Scholar] [CrossRef]
- Javed, F.; Ahmed, H.B.; Crespi, R.; Romanos, G.E. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv. Med. Appl. Sci. 2013, 5, 162–167. [Google Scholar] [CrossRef]
- Ao, J.; Li, T.; Liu, Y.; Ding, Y.; Wu, G.; Hu, K.; Kong, L. Optimal design of thread height and width on an immediately loaded cylinder implant: A finite element analysis. Comput. Boil. Med. 2010, 40, 681–686. [Google Scholar] [CrossRef]
- Wilson, T.G., Jr.; Miller, R.; Trushkowsky, R.; Dard, M. Tapered Implants in Dentistry. Adv. Dent. Res. 2016, 28, 4–9. [Google Scholar] [CrossRef]
- Markovic, A.; Ćalasan, D.; Colic, S.; Stojcev-Stajcic, L.; Janjić, B.; Mišić, T. Implant stability in posterior maxilla: Bone-condensing versus bone-drilling: A clinical study. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology 2011, 112, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Markovic, A.; Calvo-Guirado, J.L.; Lazić, Z.; Gómez-Moreno, G.; Ćalasan, D.; Guardia, J.; Colic, S.; Dds, A.A.; Gacic, B.; Delgado-Ruiz, R.; et al. Evaluation of Primary Stability of Self-Tapping and Non-Self-Tapping Dental Implants. A 12-Week Clinical Study. Clin. Implant. Dent. Relat. Res. 2011, 15, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, T.; Wagner, W.; Klein, M.O.; Stender, E.; Wieland, M.; Al-Nawas, B. Primary Stability of a Hybrid Self-Tapping Implant Compared to a Cylindrical Non-Self-Tapping Implant with Respect to Drilling Protocols in an Ex Vivo Model. Clin. Implant. Dent. Relat. Res. 2011, 13, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Irinakis, T.; Wiebe, C. Initial Torque Stability of a New Bone Condensing Dental Implant. A Cohort Study of 140 Consecutively Placed Implants. J. Oral Implant. 2009, 35, 277–282. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, D.; Sennerby, L.; Meredith, N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin. Oral Implant. Res. 2004, 15, 474–480. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, J.-H.; Lee, J.-Y.; Yi, Y.-J. A randomized controlled clinical trial of two types of tapered implants on immediate loading in the posterior maxilla and mandible. Int. J. Oral Maxillofac. Implant. 2013, 28, 1602–1611. [Google Scholar] [CrossRef]
- Ho, D.S.W.; Yeung, S.C.H.; Zee, K.Y.; Hell, P.; Tumuluri, V.; Curtis, B. Clinical and radiographic evaluation of NobelActiveTM dental implants. Clin. Oral Implant. Res. 2011, 24, 297–304. [Google Scholar] [CrossRef]
- Waechter, J.; Madruga, M.D.M.; Filho, L.C.D.C.; Leite, F.R.M.; Schinestsck, A.R.; Faot, F. Comparison between tapered and cylindrical implants in the posterior regions of the mandible: A prospective, randomized, split-mouth clinical trial focusing on implant stability changes during early healing. Clin. Implant. Dent. Relat. Res. 2017, 19, 733–741. [Google Scholar] [CrossRef]
- Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 1999, 11, 491–501. [Google Scholar]
- Swami, V.; Vijayaraghavan, V.; Swami, V. Current trends to measure implant stability. J. Indian Prosthodont. Soc. 2016, 16, 124–130. [Google Scholar] [CrossRef]
- Díaz-Castro, M.C.; Falcao, A.; López-Jarana, P.; Falcao, C.; Ríos-Santos, J.-V.; Fernández-Palacín, A.; Herrero-Climent, M. Repeatability of the resonance frequency analysis values in implants with a new technology. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e636–e642. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Climent, M.; Falcão, A.; López-Jarana, P.; Díaz-Castro, C.M.; Ríos-Carrasco, B.; Ríos-Santos, J.V. In vitro comparative analysis of two resonance frequency measurement devices: Osstell implant stability coefficient and Penguin resonance frequency analysis. Clin. Implant. Dent. Relat. Res. 2019, 21, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Pilliar, R.M.; Lee, J.M.; Maniatopoulos, C. Observations on the Effect of Movement on Bone Ingrowth into Porous-Surfaced Implants. Clin. Orthop. Relat. Res. 1986, 1986, 108–113. [Google Scholar] [CrossRef]
- Msc, F.S.L.; Douglas-De-Oliveira, D.W.; Costa, F.O. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: A systematic review. Clin. Implant. Dent. Relat. Res. 2017, 20, 26–33. [Google Scholar]
- Gil, F.J.; Planell, J.A.; Padrós, A. Fracture and fatigue behavior of shot-blasted titanium dental implants. Implant. Dent. 2002, 11, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.J.; Espinar, E.; Llamas, J.M.; Sevilla, P. Fatigue Life of Bioactive Titanium Dental Implants Treated by Means of Grit-Blasting and Thermo-Chemical Treatment. Clin. Implant. Dent. Relat. Res. 2014, 16, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Climent, M.; Albertini, M.; Rios-Santos, J.V.; Lazaro-Calvo, P.; Fernandez-Palacin, A.; Bullon, P. Resonance frequency analysis-reliability in third generation instruments: Osstell mentor(R). Med. Oral Patol. Oral Cir. Bucal 2012, 17, e801–e806. [Google Scholar]
- Jung, R.; Al-Nawas, B.; Araujo, M.; Avila-Ortiz, G.; Barter, S.; Brodala, N.; Chappuis, V.; Chen, B.; De Souza, A.; Faria-Almeida, R.; et al. Group 1 ITI Consensus Report: The influence of implant length and design and medications on clinical and patient-reported outcomes. Clin. Oral Implant. Res. 2018, 29, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Romanos, G.E.; Ciornei, G.; Jucan, A.; Malmstrom, H.; Gupta, B. In vitro assessment of primary stability of Straumann(R) implant designs. Clin. Implant Dent. Relat. Res. 2014, 16, 89–95. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Shiota, M.; Munakata, M.; Kasugai, S.; Ozeki, M. Effect of implant design on primary stability using torque-time curves in artificial bone. Int. J. Implant. Dent. 2015, 1, 21. [Google Scholar] [CrossRef] [Green Version]
Implant | IT – N/cm | ISQ | ||||
---|---|---|---|---|---|---|
Mean | p Value | SD | Mean | p Value | SD | |
VEGA—3.5 | 30.1 | 0.025 | 16.3 | 71.4 | 0.6841 | 7.8 |
Prototype I—3.5 | 22.2 | 8.2 | 71.5 | 6.1 | ||
VEGA—4.0 | 17.9 | 0.0695 | 10.8 | 64.8 | 0.454 | 10.7 |
Prototype I—4.0 | 21.3 | 11.2 | 66.6 | 7.9 |
Implant | IT – N/cm | ISQ | ||||
---|---|---|---|---|---|---|
Mean | p Value | SD | Mean | p Value | SD | |
VEGA—3.5 | 28.7 | - | 14.9 | 71.9 | - | 8.9 |
Prototype II—3.5 | 27.9 | 0.267 | 13.5 | 75.4 | 0.051 | 4.9 |
Prototype III—3.5 | 26.7 | 16.9 | 74.6 | 4.7 | ||
Prototype IV—3.5 | 25.8 | 14.2 | 74.8 | 5.5 | ||
Prototype V—3.5 | 23.2 | 11.8 | 72.1 | 6.9 | ||
Prototype VI—3.5 | 22.3 | 12.7 | 71.4 | 7.8 | ||
VEGA—4.0 | 37.8 | - | 20.4 | 73.8 | - | 6.8 |
Prototype II—4.0 | 36.7 | 0.625 | 19.7 | 76.3 | 0.012 | 6.1 |
Prototype III—4.0 | 30.2 | 13.5 | 75.0 | 7.7 | ||
Prototype IV—4.0 | 37.8 | 17.9 | 78.0 | 3.7 | ||
Prototype V—4.0 | 35.6 | 15.7 | 75.7 | 5.4 | ||
Prototype VI—4.0 | 34.4 | 17.8 | 75.5 | 6.2 |
Implant | IT – N/cm | ISQ | ||||
---|---|---|---|---|---|---|
Mean | p Value | SD | Mean | p Value | SD | |
VEGA—3.5 | 34.6 | 0.000 | 9.9 | 74.9 | 0.0001 | 5.3 |
Prototype VII—3.5 | 54.2 | 22.6 | 78.2 | 7.5 | ||
VEGA—4.0 | 43.6 | 0.0004 | 25.5 | 76.0 | 0.0192 | 5.0 |
Prototype VII—4.0 | 64.7 | 22.8 | 78.5 | 3.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero-Climent, M.; López-Jarana, P.; Lemos, B.F.; Gil, F.J.; Falcão, C.; Ríos-Santos, J.V.; Ríos-Carrasco, B. Relevant Design Aspects to Improve the Stability of Titanium Dental Implants. Materials 2020, 13, 1910. https://doi.org/10.3390/ma13081910
Herrero-Climent M, López-Jarana P, Lemos BF, Gil FJ, Falcão C, Ríos-Santos JV, Ríos-Carrasco B. Relevant Design Aspects to Improve the Stability of Titanium Dental Implants. Materials. 2020; 13(8):1910. https://doi.org/10.3390/ma13081910
Chicago/Turabian StyleHerrero-Climent, M., P. López-Jarana, B. F. Lemos, F. J. Gil, C. Falcão, J. V. Ríos-Santos, and B. Ríos-Carrasco. 2020. "Relevant Design Aspects to Improve the Stability of Titanium Dental Implants" Materials 13, no. 8: 1910. https://doi.org/10.3390/ma13081910
APA StyleHerrero-Climent, M., López-Jarana, P., Lemos, B. F., Gil, F. J., Falcão, C., Ríos-Santos, J. V., & Ríos-Carrasco, B. (2020). Relevant Design Aspects to Improve the Stability of Titanium Dental Implants. Materials, 13(8), 1910. https://doi.org/10.3390/ma13081910