Effect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia Containing 3–5 mol% Y2O3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Annealing at 1550 °C Followed by Rapid-Cooling
2.3. Optical Properties Determination
2.4. Mechanical Properties Measurement
2.5. Crystalline Phase Analysis
2.6. Microstructural Analysis
2.7. Statistical Analysis
3. Results
3.1. Optical properties
3.2. Mechanical Properties
3.3. Phase Characteristics
3.4. Microstructure
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervino, G.; Fiorillo, L.; Arzukanyan, A.V.; Spagnuolo, G.; Cicciù, M. Dental restorative digital workflow: Digital smile design from aesthetic to function. Dent. J. 2019, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef] [PubMed]
- Rice, R.W. Effects of environment and temperature on ceramic tensile strength grain size relations. J. Mater. Sci. 1997, 32, 3071–3087. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- McLaren, E.A.; Lawson, N.; Choi, J.; Kang, J.; Trujillo, C. New high-translucent cubic-phase-containing zirconia: Clinical and laboratory considerations and the effect of air abrasion on strength. Compend. Contin. Educ. Dent. 2017, 38, e13–e16. [Google Scholar]
- Scott, H.G. Phase relationships in the zirconia-yttria system. J. Mater. Sci. 1975, 10, 1527–1535. [Google Scholar] [CrossRef]
- Pagano, S.; Moretti, M.; Marsili, R.; Ricci, A.; Barraco, G.; Cianetti, S. Evaluation of the accuracy of four digital methods by linear and volumetric analysis of dental impressions. Materials 2019, 12, 1958. [Google Scholar] [CrossRef] [Green Version]
- Takaki, M. Mechanical properties of toughened ZrO2-Y2O3 Ceramics. J. Am. Ceram. Soc. 1986, 69, 638–640. [Google Scholar] [CrossRef]
- Sánchez-Bajo, F.; Cumbrera, F.L.; Guiberteau, F.; Domínguez-Rodriguez, A. Microstructural characterization of Y-PSZ (4 mol%) polycrystals by means of x-ray diffraction experiments. Mater. Lett. 1992, 15, 39–44. [Google Scholar] [CrossRef]
- Gibson, I.R.; Irvine, J.T.S. Qualitative x-ray diffraction analysis of metastable tetragonal (t’) zirconia. J. Am. Ceram. Soc. 2001, 84, 615–618. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Syamaprasad, U.; Galgali, R.K.; Mohanty, B.C. Preparation of stable t’-zirconia. Mater. Lett. 1992, 15, 281–284. [Google Scholar] [CrossRef]
- Jue, J.F.; Chen, J.; Virkar, A.V. Low-temperature aging of t’-zirconia: The role of microstructure on phase stability. J. Am. Ceram. Soc. 1991, 74, 1811–1820. [Google Scholar] [CrossRef]
- Jue, J.F.; Virkar, A.V. Fabrication, microstructural characterization, and mechanical properties of polycrystalline t’-zirconia. J. Am. Ceram. Soc. 1990, 73, 3650–3657. [Google Scholar] [CrossRef]
- Srinivasan, G.V.; Jue, J.F.; Kuo, S.Y.; Virkar, A.V. Ferroelastic domain switching in polydomain tetragonal zirconia single crystals. J. Am. Ceram. Soc. 1989, 72, 2098–2103. [Google Scholar] [CrossRef]
- Chaim, R.; Rühle, M.; Heuer, A.H. Microstructural evolution in a ZrO2-12 wt% Y2O3 ceramic. J. Am. Ceram. Soc. 1985, 68, 427–431. [Google Scholar] [CrossRef]
- Zhou, Y.; Lei, T.C. Diffusionless cubic-to-tetragonal phase transition and microstructural evolution in sintered zirconia-yttria ceramics. J. Am. Ceram. Soc. 1991, 74, 633–640. [Google Scholar] [CrossRef]
- Nogueira, A.D.; Bona, A.D. The effect of a coupling medium on color and translucency of CAD-CAM ceramics. J. Dent. 2013, 41 (Suppl. 3), e18–e23. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Illumination. CIE 15:2004, Colorimetry 3rd ed. CIE: Vienna, Austria. Available online: http://cie.co.at/publications/colorimetry-3rd-edition (accessed on 25 November 2019).
- Spink, L.S.; Rungruanganut, P.; Megremis, S.; Kelly, J.R. Comparison of an absolute and surrogate measure of relative translucency in dental ceramics. Dent. Mater. 2013, 29, 702–707. [Google Scholar] [CrossRef]
- Brodbelt, R.H.; O’Brien, W.J.; Fan, P.L. Translucency of dental porcelains. J. Dent. Res. 1980, 59, 70–75. [Google Scholar] [CrossRef]
- International Commission on Illumination. CIE S 017/E: 2011, International Lighting Vocabulary. CIE: Vienna, Austria. Available online: http://cie.co.at/publications/international-lighting-vocabulary (accessed on 20 February 2018).
- International Organization for Standardization. ISO 6872:2015, Dentistry-Ceramic Materials. ISO: Geneva, Switzerland. Available online: https://www.iso.org.standard/59936.html (accessed on 11 April 2018).
- Cesar, P.F.; Della Bona, A.; Scherrer, S.S.; Tholey, M.; van Noort, R.; Vichi, A.; Kelly, R.; Lohbauer, U. ADM guidance-ceramics: Fracture toughness testing and method selection. Dent. Mater. 2017, 33, 575–584. [Google Scholar] [CrossRef] [PubMed]
Materials | Manufacturer | Shade | Batch No. | Composition (wt%) | Sintering Condition |
---|---|---|---|---|---|
Zirconia | |||||
Luxen Zr (3Y-TZP) | DENTALMAX | S2 | 160523-S2-2 | Y2O3: 5.35, Al2O3: 0.05, SiO2, Fe2O3 ≤ 0.002 | 1500 °C for 2 h |
Luxen Enamel (4Y-PSZ) | DENTALMAX | E2 | 190327-10E2P-6 | Y2O3: 6.95, Al2O3: 0.05, SiO2, Fe2O3 ≤ 0.002 | 1500 °C for 2 h |
Luxen Smile (5Y-PSZ) | DENTALMAX | SMS2 | 190222-10SMS2-1 | Y2O3: 9.32, Al2O3: 0.05, SiO2, Fe2O3 ≤ 0.002 | 1500 °C for 2 h |
Glass-Ceramic | |||||
IPS e.max CAD | Ivoclar Vivadent | HT A2 | T02466 V35858 X17428 | SiO2: 57.0–80.0, Li2O: 11.0–19.0, Other oxides | 820 °C for 2 min + 840 °C for 7 min |
Materials | L* | a* | b* | TP | T% | |
---|---|---|---|---|---|---|
Zirconia | ||||||
3Y-TZP | S2 | 82.54 (1.62) | −0.59 (0.22) | 11.11 (1.81) a | 4.43 (1.62) a | 30.86 (5.82) |
R/S2 | 85.13 (1.59) | −0.98 (0.11) | 7.49 (0.63) b | 4.65 (0.39) a | 32.59 (4.73) | |
4Y-PSZ | E2 | 76.28 (1.88) | −0.37 (0.04) | 13.77 (0.97) | 8.47 (1.38) | 44.13 (5.27) |
R/E2 | 79.15 (0.80) | −1.09 (0.13) a | 7.97 (0.50) b | 8.93 (0.43) | 49.39 (2.99) | |
5Y-PSZ | SMS2 | 74.51 (2.02) | −1.28 (0.09) | 11.50 (0.66) a | 9.37 (1.31) | 51.08 (4.38) |
R/SMS2 | 77.21 (2.51) | −1.03 (0.16) a | 9.47 (0.45) | 9.66 (1.06) | 53.94 (1.06) | |
Glass-Ceramic | ||||||
e.max CAD | HT A2 | 65.81 (0.51) | −1.13 (0.04) | 8.64 (0.27) | 17.42 (0.29) | 86.17 (0.91) |
Materials | Density (g/cm3) | Modulus (GPa) | Hardness (GPa) | Strength (MPa) | Toughness (MPa m1/2) | |
---|---|---|---|---|---|---|
Zirconia | ||||||
3Y-TZP | S2 | 6.096 | 208 | 12.74 (0.05) | 1054.4 (68.1) | 4.34 (0.09) |
R/S2 | 6.077 | 211 | 12.4 (0.19) | 154.7 (84.1) | 5.74 (0.17) | |
4Y-PSZ | E2 | 6.108 | 212 | 13.08 (0.13) | 1038.4 (55.4) | 3.54 (0.13) |
R/E2 | 6.087 | 211 | 12.78 (0.04) | 256.3 (77.1) | 4.80 (0.20) | |
5Y-PSZ | SMS2 | 6.100 | 214 | 13.16 (0.15) | 801.7 (64.5) | 3.18 (0.13) |
R/SMS2 | 6.057 | 311 | 12.82 (0.08) | 306.1 (61.8) | 6.88 (0.38) | |
Glass-Ceramic | ||||||
e.max CAD | HT A2 | 2.502 | 102 | 5.72 (0.08) | 288.5 (31.0) | 2.34 (0.32) |
Parameter | 3Y-TZP | 4Y-PSZ | 5Y-PSZ | |||
---|---|---|---|---|---|---|
S2 | R/S2 | E2 | R/E2 | SMS2 | R/SMS2 | |
Rwp (%) | 5.77 | 6.00 | 5.60 | 5.88 | 5.62 | 5.90 |
Rexp (%) | 2.71 | 1.52 | 2.73 | 1.51 | 2.65 | 1.51 |
Rp (%) | 4.51 | 4.69 | 4.41 | 4.42 | 4.27 | 4.56 |
GOF | 2.13 | 3.95 | 2.05 | 3.89 | 2.12 | 3.90 |
t-phase | ||||||
z (O) | 0.5387(7) | 0.5418(10) | 0.5368(11) | 0.5457(14) | 0.5472(12) | 0.5485(18) |
a (Å) | 3.6045(2) | 3.60489(3) | 3.6061(4) | 3.60599(5) | 3.6058(3) | 3.60501(5) |
c (Å) | 5.1787(4) | 5.17902(6) | 5.1778(7) | 5.17898(10) | 5.1778(7) | 5.17832(10) |
Amount (wt%) | 79.2(5) | 73.9(5) | 60.0(6) | 48.4(5) | 40.9(3) | 35.6(5) |
c/a ratio | 1.0159 | 1.0159 | 1.0153 | 1.0156 | 1.0154 | 1.0157 |
t’-phase | ||||||
z (O) | 0.466(3) | 0.478(6) | 0.472(2) | 0.485(4) | 0.482(2) | 0.479(2) |
a (Å) | 3.6218(11) | 3.62105(10) | 3.6224(7) | 3.62192(6) | 3.6238(4) | 3.62219(5) |
c (Å) | 5.1533(2) | 5.1548(2) | 5.1524(14) | 5.15502(13) | 5.1527(8) | 5.15506(10) |
Amount (wt%) | 20.8(5) | 26.1(5) | 40.0(6) | 51.6(5) | 59.1(3) | 64.4(5) |
c/a ratio | 1.0061 | 1.0066 | 1.0058 | 1.0064 | 1.0054 | 1.0063 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-K. Effect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia Containing 3–5 mol% Y2O3. Materials 2020, 13, 1923. https://doi.org/10.3390/ma13081923
Kim H-K. Effect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia Containing 3–5 mol% Y2O3. Materials. 2020; 13(8):1923. https://doi.org/10.3390/ma13081923
Chicago/Turabian StyleKim, Hee-Kyung. 2020. "Effect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia Containing 3–5 mol% Y2O3" Materials 13, no. 8: 1923. https://doi.org/10.3390/ma13081923
APA StyleKim, H. -K. (2020). Effect of A Rapid-Cooling Protocol on the Optical and Mechanical Properties of Dental Monolithic Zirconia Containing 3–5 mol% Y2O3. Materials, 13(8), 1923. https://doi.org/10.3390/ma13081923