Investigation on Compressive Characteristics of Steel-Slag Concrete
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials and Specimen Preparation
2.2. Test Setup and Procedure
3. Test Results and Discussion
3.1. Dependence of Compressive Strength on Testing Age of Steel-Slag Concretes
3.2. Modulus of Elasticity and Poisson’s Ratio of Steel-Slag Concrete
3.3. Size and Shape-Dependent Compressive Strengh of the Steel-Slag Concrete
3.3.1. Statistical Approach about Size Effect on Compressive Strength of Steel-Slag Concrete
3.3.2. Deterministic Approach about Size Effect on Compressive Strength of Steel-Slag Concrete
3.3.3. Deriving Conversion Factors for the Compressive Specimens Using the Steel-Slag Concrete with Various Sizes and Shapes
3.4. Effect of the Added Water Amount on Compressive Strength of Steel-Slag Concrete
4. Conclusions
- Regardless of testing age, the order of steel-slag concretes in term of compressive strength was not changed as follows: XT03 > XT02 > XT01. The compressive strength at 7 days and 28 days were about 55–66% and 69–73% of compressive strength at 365 days, respectively.
- The axial strain capacities of the steel-slag concretes were in a range between 2.60‰ and 2.82‰. The lateral strain capacities of the steel-slag concretes were higher than axial strain capacities from 1.23 to 1.68 times. The derived Poisson’s ratios and moduli of elasticity of the steel-slag concretes were usual in comparison with traditional concrete.
- The studied steel-slag concrete demonstrated clear size effects on compressive strength, in both cube specimens and cylinder specimens, i.e., the smaller-sized specimen would produce the higher compressive strength.
- According to Weibull’s size effect law, the obtained Weibull modulus for the compressive strength of the steel-slag concrete, 6.8 for cube specimen and 11.32 for cylinder specimen, were entirely in the range from 4.2 to 24.2, the zone of the Weibull modulus for strength of the traditional concrete.
- In Bažant’s size effect law, the obtained material parameter of the steel-slag concrete were as follows: mm for cube specimen and mm for cylinder specimen. The response curves describing Bažant’s size effect law of the steel-slag concrete were presented.
- The conversion factors for compressive strength using different sizes and shapes of the steel-slag concrete were explored. Generally, the conversion factors of the steel-slag concrete were slightly lower than those of traditional concrete, however, their differences were comparatively small.
- The slump value of the steel-slag concrete decreased with increasing of the cement/water ratio, while its compressive strength was different: it increased with increasing of cement/water up to 2.5 and decreased after that, the optimal cement/water was 2.5 to obtain the highest strength. The relationship between the compressive strength and cement/water ratio of the steel-slag concretes was almost inside the bound zone of traditional concrete.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furlani, E.; Tonello, G.; Maschio, S. Recycling of steel slag and glass cullet from energy saving lamps by fast firing production of ceramics. Waste Manag. 2010, 30, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. J. Clean. Prod. 2017, 166, 835–843. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Falchetto, A.C.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C. Harvesting the unexplored potential of European waste materials for road construction. Res. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Galán, A.; Rosendo, J.; de Diego, J.Á.; Dondi, M.; Bueno, S. Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials. J. Clean. Prod. 2017, 142, 1778–1788. [Google Scholar] [CrossRef]
- Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z. Properties and hydration of blended cements with steelmaking slag. Cem. Concr. Res. 2007, 37, 815–822. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, Q.; Wei, J.; Li, J.; Zhang, P. Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Res. Conserv. Recycl. 2011, 56, 48–55. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Wei, J.; Zhang, T. Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 2011, 41, 324–329. [Google Scholar] [CrossRef]
- Peng, Y.C.; Hwang, C.L. Carbon steel slag as cementitious material for self-consolidating concrete. J. Zhejiang Univ. Sci. A 2010, 11, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Qiang, W.; Mengxiao, S.; Jun, Y. Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete. Constr. Build. Mater. 2016, 123, 601–610. [Google Scholar] [CrossRef]
- Shi, M.; Wang, Q.; Zhou, Z. Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition. Constr. Build. Mater. 2015, 98, 649–655. [Google Scholar]
- Song, J.; Nguyen, D.L.; Manathamsombat, C.; Kim, D.J. Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites. J. Compos. Mater. 2015. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Lam, M.N.-T.; Kim, D.J.; Song, J. Direct tensile self-sensing and fracture energy of steel-fiber-reinforced concretes. Compos. Part B 2020, 183, 107714. [Google Scholar] [CrossRef]
- Hu, J. Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete. J. Therm. Anal. Calorim. 2017, 128, 1251–1263. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, Q.; Wei, J.; Li, J. Investigation on mechanical properties, durability and micro-structural development of steel slag blended cements. J. Therm. Anal. Calorim. 2012, 110, 633–639. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M.; Jin, F.; Al-Tabbaa, A.; Wang, A. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cem. Concr. Compos. 2017, 83, 138–145. [Google Scholar] [CrossRef]
- Palankar, N.; Shankar, A.R.; Mithun, B.M. Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates. J. Clean. Prod. 2016, 129, 437–448. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Sharif, A.M.; Shameem, M.; Ibrahim, M.; Barry, M.S. Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr. Build. Mater. 2003, 17, 105–112. [Google Scholar] [CrossRef]
- Biskri, Y.; Achoura, D.; Chelghoum, N.; Mouret, M. Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates. Constr. Build. Mater. 2017, 150, 167–178. [Google Scholar] [CrossRef]
- Monosi, S.; Ruello, M.L.; Sani, D. Electric arc furnace slag as natural aggregate replacement in concrete production. Cem. Concr. Com 2016, 66, 66–72. [Google Scholar] [CrossRef]
- Netinger, I.; Bjegović, D.; Vrhovac, G. Utilisation of steel slag as an aggregate in concrete. Mater. Struct. 2011, 44, 1565–1575. [Google Scholar] [CrossRef]
- Tran, A.T.; Tran, G.H.; Nguyen, N.T.H.; Nguyen, K.S. Characterization of carbonated steelmaking slag and its potential application in construction. VN. J. Sci. Tech 2019, 57, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.N.T.; Jaritngam, S.; Le, D.H. Roller-compacted concrete pavement made of electric arc furnace slag aggregate: Mix design and mechanical properties. Constr. Build. Mater. 2017, 154, 482–495. [Google Scholar] [CrossRef]
- Lam, M.N.T.; Le, D.H.; Jaritngam, S. Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Constr. Build. Mater. 2018, 191, 912–922. [Google Scholar] [CrossRef]
- Lam, M.N.T.; Jaritngam, S.; Le, D.H. EAF slag aggregate in roller-compacted concrete pavement: Effects of delay in compaction. Sustainability 2018, 10, 1122. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.H.; Nguyen, H.V.; Phan, D.H.; Mai, H.H. Flexural behavior of reinforced concrete beams made with steel slag coarse aggregate. J. Build. 2015, 7–8, 49–52. [Google Scholar]
- Nguyen, T.T.H.; Phan, D.H.; Mai, H.H. Modified compositions of concretes using steel slag coarse aggregate. J. Build. 2016, 2–3, 63–71. [Google Scholar]
- Tran, V.M.; Ton, N.P.N. Study on properties of concrete using steel slag aggregates. J. Constr. 2017, 7, 125–128. [Google Scholar]
- Nguyen, D.L.; Song, J.; Manathamsombat, C.; Kim, D.J. Comparative electromechanical damage-sensing behavior of six strain-hardening steel-fiber-reinforced cementitious composites under direct tension. Compos. Part B 2015, 69, 159–168. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Kim, D.J.; Thai, D.K. Enhancing damage-sensing capacity of strain-hardening macro-steel fiber-reinforced concrete by adding low amount of discrete carbons. Materials 2019, 12, 938. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.L.; Thai, D.K.; Kim, D.J. Direct tension-dependent flexural behavior of ultra-high-performance fiber-reinforced concretes. J. Strain Anal. Eng. Des. 2017, 52, 121–134. [Google Scholar] [CrossRef]
- Weihull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 290–293. [Google Scholar]
- Bažant, Z. Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech. 1984, 110, 518–535. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Kazemi, M.T. Size effect on diagonal shear failure of beams without stirrups. ACI Struct. J. 1991, 88, 268–276. [Google Scholar]
- Nguyen, D.L.; Thai, D.K.; Ngo, T.T.; Tran, T.K.; Nguyen, T.T. Weibull modulus from size effect of high-performance fiber-reinforced concrete under compression and flexure. Conserv. Build. Mater. 2019, 226, 743–758. [Google Scholar] [CrossRef]
- Hydraulic Concrete—Technical Requirements; TCVN 8218:2009; Construction Publishing House: Ha Noi, Vietnam, 2009.
- Building Code Requirements for Structural Concrete; ACI 318-14; American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Rađenović, A.; Malina, J.; Sofilić, T. Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng. 2013, 2013, 198240. [Google Scholar] [CrossRef] [Green Version]
- Standard Test Method for Static Modulus of Elasticity Poisson’s Ratio of Concrete in Compression; Annual Book of ASTM Standards ASTM C469-02; ASTM International: West Conshohocken, PA, USA, 2002.
- Huu, P.D. High Strength Concrete and High Performance Concrete; Construction Publishing House: Ha Noi, Vietnam, 2008; p. 26. [Google Scholar]
- Nguyen, D.L.; Kim, D.J. Sensitivity of various steel-fiber types to compressive behavior of ultra–high–performance fiber–reinforced concretes. In Proceedings of the AFGC-ACI-fib-RILEM International Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC 2017, Montpellier, France, 2–4 October 2017. [Google Scholar]
- Nguyen, D.L.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete. Compos. Part B Eng. 2013, 45, 1104–1116. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Ryu, G.S.; Koh, K.T.; Kim, D.J. Size and geometry dependent tensile behavior of ultra-high-performance fiber-reinforced concrete. Compos. Part. B Eng. 2014, 58, 279–292. [Google Scholar] [CrossRef]
- Bazant, Z. Probabilistic modeling of quasibrittle fracture and size effect. In Proceedings of the ICOSSAR 2001: 8th International Conference on Structural Safety and Reliability, Newport Beach, CA, USA, 17–21 June 2001; pp. 1–23. [Google Scholar]
- Bazant, Z.; Planas, J. Fracture and Size Effect on Concrete and Other Quasibrittle Materials; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Fládr, J.; Broukalová, I.; Bílý, P. Determination of conversion factors for compressive strength of HPFRC measured on specimens of different dimensions. In Proceedings of the AFGC-ACI-fib-RILEM International Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC 2013, Marseille, France, 1–3 October 2013; pp. 731–738. [Google Scholar]
- Kim, J.-K.; Yi, S.-T. Application of size effect to compressive strength of concrete members. Sadhana 2002, 27, 467. [Google Scholar] [CrossRef] [Green Version]
- Kosmatka, S.H.; Kerkhoff, B.; Panarese, W.C. Design and Control of Concrete Mixtures; Portland Cement Association: Skokie, IL, USA, 2002; p. 8. ISBN 0-89312-217-3. [Google Scholar]
- Pellegrino, C.; Gaddo, V. Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cem. Concr. Compost. 2009, 31, 663–671. [Google Scholar] [CrossRef]
Series | Cement | Fine Aggregate | Steel-Slag | Water | C/W (W/C) | Water Curing |
---|---|---|---|---|---|---|
XT01 | 1.76 | 3.39 | 6.72 | 1.00 | 1.76 (0.57) | 25 ± 5 °C |
XT02 | 2.00 | 3.30 | 6.55 | 1.00 | 2.00 (0.50) | |
XT03 | 2.21 | 3.22 | 6.39 | 1.00 | 2.21 (0.45) |
Fine Aggregate (River Sand) | Coarse Aggregate (Steel-Slag) | ||
---|---|---|---|
Size of Sieve (mm) | Pass (%) | Size of Sieve (mm) | Pass (%) |
4.75 | 100 | - | - |
2.36 | 91.5 | - | - |
1.18 | 73.4 | 37.5 | 0 |
0.6 | 54 | 19 | 9 |
0.3 | 24.5 | 9.5 | 56 |
0.15 | 7 | 4.75 | 94.9 |
<0.14 | 0.0 | 19 | 100.0 |
Physical Properties | Steel-Slag | |
---|---|---|
Dmin-Dmax | 5-20 | mm |
Specific gravity | 3.56 | g/cm3 |
Bulk dry specific gravity | 3.32 | g/cm3 |
Bulk saturated surface dry specific gravity | 3.39 | g/cm3 |
Water absorption | 2.1 | % |
Bulk density | 1720 | kg/m3 |
Voids | 48.2 | % |
SiO2 | Al2O3 | FeO | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | P2O5 | SO3 | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|---|---|
55.27 | 18.56 | 0.20 | 11.66 | 5.77 | 1.85 | 1.34 | 1.72 | 1.02 | 1.48 | 0.39 | 0.21 |
Age (day) | Compressive Strength (MPa) | ||
---|---|---|---|
XT01 | XT02 | XT03 | |
3 | 23.03 | 31.96 | 34.81 |
7 | 28.33 | 35.79 | 41.81 |
14 | 30.36 | 37.88 | 42.87 |
21 | 32.53 | 39.16 | 43.92 |
28 | 35.81 | 42.52 | 46.72 |
56 | 42.15 | 49.05 | 51.58 |
90 | 44.91 | 54.07 | 60.63 |
180 | 49.73 | 56.66 | 62.01 |
365 | 51.83 | 59.00 | 63.80 |
Series | Parameter | Maximum Force, | Compressive Strength | Lateral Strain Capacity | Axial Strain Capacity | Poisson’s Ratio | Modulus of Elasticity | Toughness (MPa. ‰) |
---|---|---|---|---|---|---|---|---|
XT01 | Specimen1 | 378.30 | 21.41 | −3.282 | 2.509 | 0.1705 | 30.35 | 40.94 |
Specimen2 | 404.17 | 22.87 | −3.260 | 2.610 | 0.1743 | 31.24 | 47.47 | |
Specimen3 | 432.00 | 24.45 | −3.307 | 2.681 | 0.1726 | 31.78 | 52.35 | |
Specimen4 | 441.40 | 24.98 | −3.578 | 2.693 | 0.1710 | 32.49 | 51.49 | |
Average value | 413.97 | 22.91 | −3.283 | 2.600 | 0.1725 | 31.12 | 46.92 | |
Standard deviation | 26.86 | 1.52 | 0.024 | 0.086 | 0.002 | 0.72 | 5.73 | |
XT02 | Specimen1 | 553.70 | 31.33 | −4.418 | 2.841 | 0.1753 | 36.50 | 71.45 |
Specimen2 | 571.60 | 32.35 | −4.756 | 2.737 | 0.1875 | 36.63 | 66.02 | |
Specimen3 | 585.00 | 33.10 | -4.924 | 2.836 | 0.1766 | 36.91 | 71.00 | |
Average value | 570.1 | 32.26 | −4.699 | 2.805 | 0.1798 | 36.68 | 69.49 | |
Standard deviation | 15.70 | 0.89 | 0.258 | 0.059 | 0.007 | 0.21 | 3.01 | |
XT03 | Specimen1 | 626.82 | 35.47 | −3.193 | 2.882 | 0.1930 | 38.93 | 77.61 |
Specimen2 | 628.69 | 35.58 | −3.877 | 2.899 | 0.1926 | 39.06 | 79.86 | |
Specimen3 | 629.06 | 35.60 | −3.504 | 2.807 | 0.1950 | 39.34 | 77.58 | |
Specimen4 | 637.73 | 36.09 | −3.357 | 2.697 | 0.2028 | 39.51 | 76.46 | |
Average value | 630.575 | 35.68 | −3.483 | 2.821 | 0.196 | 39.21 | 77.88 | |
Standard deviation | 4.87 | 0.28 | −3.282 | 0.092 | 0.005 | 0.27 | 1.42 |
Specimen Type (Specimen Name) | Parameter | Maximum Force, | Strength |
---|---|---|---|
70.7 × 70.7 × 70.7 (CU070) | Specimen1 | 268.53 | 53.72 |
Specimen2 | 245.20 | 49.05 | |
Specimen3 | 259.84 | 51.98 | |
Average value | 257.85 | 51.59 | |
Standard deviation | 11.79 | 2.36 | |
100 × 100 × 100 (CU100) | Specimen1 | 437.41 | 43.74 |
Specimen2 | 424.97 | 42.50 | |
Specimen3 | 413.11 | 41.31 | |
Average value | 425.16 | 42.52 | |
Standard deviation | 12.15 | 1.21 | |
150 × 150 × 150 (CU150) | Specimen1 | 854.24 | 37.97 |
Specimen2 | 858.49 | 38.15 | |
Specimen3 | 867.13 | 38.54 | |
Average value | 859.95 | 38.22 | |
Standard deviation | 6.57 | 0.29 | |
Ø70 × 140 (CY70) | Specimen1 | 146.49 | 38.07 |
Specimen2 | 155.94 | 40.52 | |
Specimen3 | 143.03 | 37.17 | |
Average value | 148.49 | 38.58 | |
Standard deviation | 6.68 | 1.74 | |
Ø100 × 200 (CY100) | Specimen1 | 273.97 | 34.88 |
Specimen2 | 266.52 | 33.93 | |
Specimen3 | 290.54 | 36.99 | |
Average value | 277.01 | 35.27 | |
Standard deviation | 12.30 | 1.57 | |
Ø150 × 300 (CY150) | Specimen1 | 553.70 | 31.33 |
Specimen2 | 571.60 | 32.35 | |
Specimen3 | 585.00 | 33.10 | |
Average value | 570.10 | 32.26 | |
Standard deviation | 15.70 | 0.89 |
Concrete Type | Basic Specimen | ||||||
---|---|---|---|---|---|---|---|
CU070 | CU100 | CU150 | CY70 | CY100 | CY150 | ||
Steel-slag concrete (XT02) | CU150 | 0.74 | 0.90 | 1.00 | 0.99 | 1.08 | 1.18 |
Traditional concrete [36] | CU150 | 0.85 | 0.91 | 1.00 | 1.16 | 1.17 | 1.20 |
C/W (W/C) | 2.00/0.7 (0.35) | 2.00/0.8 (0.40) | 2.00/0.9 (045) | 2.00/1.0 (0.50) | 2.00/1.1 (0.55) | 2.00/1.2 (0.60) | 2.00/1.3 (0.65) | 2.00/1.4 (0.70) |
---|---|---|---|---|---|---|---|---|
Slump (cm) | 1 | 2 | 3 | 4 | 5 | 7 | 10 | 14 |
Compressive strength (MPa) | 55.81 | 66.45 | 54.10 | 42.52 | 44.19 | 28.11 | 24.27 | 23.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.-H.; Phan, D.-H.; Mai, H.-H.; Nguyen, D.-L. Investigation on Compressive Characteristics of Steel-Slag Concrete. Materials 2020, 13, 1928. https://doi.org/10.3390/ma13081928
Nguyen T-T-H, Phan D-H, Mai H-H, Nguyen D-L. Investigation on Compressive Characteristics of Steel-Slag Concrete. Materials. 2020; 13(8):1928. https://doi.org/10.3390/ma13081928
Chicago/Turabian StyleNguyen, Thi-Thuy-Hang, Duc-Hung Phan, Hong-Ha Mai, and Duy-Liem Nguyen. 2020. "Investigation on Compressive Characteristics of Steel-Slag Concrete" Materials 13, no. 8: 1928. https://doi.org/10.3390/ma13081928
APA StyleNguyen, T. -T. -H., Phan, D. -H., Mai, H. -H., & Nguyen, D. -L. (2020). Investigation on Compressive Characteristics of Steel-Slag Concrete. Materials, 13(8), 1928. https://doi.org/10.3390/ma13081928