An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Hydrated and Non-Crystalline WO3 and Electrodes Preparation
2.1.1. Morphology and Crystal Structure
2.1.2. Electrochemical Measurements
3. Results and Discussion
3.1. Morphology and Structure
3.2. Electrochemical Properties
3.2.1. Aqueous Electrolyte
Three-Electrode System Configuration
Two-Electrode Configuration
3.2.2. Non-Aqueous Electrolyte
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lelieveld, J.; Klingmueller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef] [Green Version]
- Murty, P. Renewable Energy Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 783–800. [Google Scholar]
- Sharma, P.; Bhatti, T. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Woodbridge, J. Storage batteries. J. Frankl. Inst. 1924, 198, 271. [Google Scholar] [CrossRef]
- Ujjain, S.K.; Singh, G.; Sharma, R.K. Co3O4@reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor. Electrochim. Acta 2015, 169, 276–282. [Google Scholar] [CrossRef]
- Szkoda, M.; Trzciński, K.; Rysz, J.; Gazda, M.; Siuzdak, K.; Lisowska-Oleksiak, A. Electrodes consisting of PEDOT modified by prussian blue analogues deposited onto titania nanotubes—Their highly improved capacitance. Solid State Ion. 2017, 302, 197–201. [Google Scholar] [CrossRef]
- Ahuja, P.; Ujjain, S.K.; Kanojia, R. MnO x/C nanocomposite: An insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection. Appl. Surf. Sci. 2017, 404, 197–205. [Google Scholar] [CrossRef]
- Perna, P.; Maccariello, D.; Radovic, M.; Di Uccio, U.S.; Pallecchi, I.; Codda, M.; Marré, D.; Cantoni, C.; Gazquez, J.; Varela, M.; et al. Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure. Appl. Phys. Lett. 2010, 97, 152111. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.N.R.; Matte, H.S.S.R.; Maitra, U. Graphene analogues of inorganic layered materials. Angew. Chem. Int. Ed. 2013, 52, 13162–13185. [Google Scholar] [CrossRef] [PubMed]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Zhang, S.; Liu, S.; Cai, Y.; Low, M.; Teng, C.P.; Phang, I.Y.; Cheng, Y.; Duei, K.L.; Srinivasan, B.M.; et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 2015, 137, 6152–6155. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469. [Google Scholar] [CrossRef]
- Tang, C.-J.; He, J.; Jaing, C.-C.; Liang, C.-J.; Chou, C.-H.; Han, C.-Y.; Tien, C.-L. An all-solid-state electrochromic device based on WO3–Nb2O5 composite films prepared by fast-alternating bipolar-pulsed reactive magnetron sputtering. Coatings 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Yu, Q.; Chen, K.; Sun, P.; Liu, F.; Yan, X.; Liu, F.; Lu, G. Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection. J. Colloid Interface Sci. 2019, 535, 458–468. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Liu, P.; Zhu, X.; Li, X.; Ali, R.N.; Xiang, B. Enhanced electrocatalytic activity of WO3@NPRGO composite in a hydrogen evolution reaction. Appl. Surf. Sci. 2019, 463, 275–282. [Google Scholar] [CrossRef]
- Bi, Q.; Gao, Y.; Dang, C.; Wang, Z.; Xue, J.; Xue, J. Study on the photoelectrocatalytic performance of a WO3 thin film electrode by constructing a BiOI/WO3 heterojunction. CrystEngComm 2019, 21, 6744–6757. [Google Scholar] [CrossRef]
- Qiu, M.; Shen, L.; Song, S.; Tan, S.; Sun, P.; Wang, K.; Yu, X.; Zhao, C.; Mai, W. WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 2016, 4, 7266–7273. [Google Scholar] [CrossRef]
- Mandal, D.; Routh, P.; Nandi, A.K. A new facile synthesis of tungsten oxide from tungsten disulfide: Structure dependent supercapacitor and negative differential resistance properties. Small 2017, 14, 1702881. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, Z.; Lv, G.; Qu, L.; Zhao, Y. Coupling interconnected MoO3/WO3 nanosheets with a graphene framework as a highly efficient anode for lithium-ion batteries. Nanoscale 2018, 10, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Lokhande, V.; Lokhande, A.; Namkoong, G.; Kim, J.H.; Ji, T. Charge storage in WO3 polymorphs and their application as supercapacitor electrode material. Results Phys. 2019, 12, 2012–2020. [Google Scholar] [CrossRef]
- Obregón, S.; Caballero, A.; Colón, G. Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity. Appl. Catal. B Environ. 2012, 117, 59–66. [Google Scholar] [CrossRef]
- Rahman, M.; MacElroy, J.M.D.; Dowling, D.P. Influence of the physical, structural and chemical properties on the photoresponse property of magnetron sputtered TiO2 for the application of water splitting. J. Nanosci. Nanotechnol. 2011, 11, 8642–8651. [Google Scholar] [CrossRef]
- Szubzda, B.; Szmaja, A.; Halama, A. Influence of structure and wettability of supercapacitor electrodes carbon materials on their electrochemical properties in water and organic solutions. Electrochim. Acta 2012, 86, 255–259. [Google Scholar] [CrossRef]
- Nagy, D.; Szilágyi, I.M.; Fan, X. Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Adv. 2016, 6, 33743–33754. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Pal, S.; De, S. Mixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy density. New J. Chem. 2019, 43, 12385–12395. [Google Scholar] [CrossRef]
- Zhang, C.; Park, S.-H.; O’Brien, S.E.; Seral-Ascaso, A.; Liang, M.; Hanlon, D.; Krishnan, D.; Crossley, A.; McEvoy, N.; Coleman, J.N.; et al. Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy 2017, 39, 151–161. [Google Scholar] [CrossRef]
- Chang, K.-H.; Hu, C.-C. Oxidative synthesis of RuOx⋅nH2O with ideal capacitive characteristics for supercapacitors. J. Electrochem. Soc. 2004, 151, A958. [Google Scholar] [CrossRef]
- Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2012, 25, 267–272. [Google Scholar] [CrossRef]
- Luan, F.; Wang, G.; Ling, Y.; Lu, X.; Wang, H.; Tong, Y.; Liu, X.-X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M.-S.; Jie, T.; Tong, Y. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 2014, 26, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T.; et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Xie, S.; Yu, M.; Fang, P.; Liang, C.; Lu, X.; Tong, Y. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 2014, 8, 255–263. [Google Scholar] [CrossRef]
- Kim, H.; Cook, J.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B.S. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2016, 16, 454–460. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Smith, R.J.; King, P.J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G.S.; Grunlan, J.C.; Moriarty, G.; et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 3944–3948. [Google Scholar] [CrossRef]
- Tagaya, H.; Ara, K.; Kadokawa, J.-I.; Karasu, M.; Chiba, K. Intercalation of organic compounds in the layered host lattice MoO3. J. Mater. Chem. 1994, 4, 551. [Google Scholar] [CrossRef]
- Murugan, A.V.; Viswanath, A.K.; Gopinath, C.S.; Vijayamohanan, K. Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor. J. Appl. Phys. 2006, 100, 74319. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, Z.; Yu, P.; Cai, Y.; Du, Y.; Wu, D.; Gao, S.; Tan, C.; Li, Z.; Ren, M.; et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468. [Google Scholar] [CrossRef]
- Shi, J.; Kuwahara, Y.; Wen, M.; Navlani-García, M.; Mori, K.; An, T.; Yamashita, H. Room-temperature and aqueous-phase synthesis of plasmonic molybdenum oxide nanoparticles for visible-light-enhanced hydrogen generation. Chem. Asian J. 2016, 11, 2377–2381. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, W.; Jin, Z.; Huang, W.; Lin, J.; Ma, G.; Li, S.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem. Int. Ed. 2017, 56, 9851–9855. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Jianping, L.; Yonghua, T.; Yuguang, C.; Fei, L.; Guo, S. Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 238, 161–167. [Google Scholar] [CrossRef]
- Meng, X.; Deng, D. Trash to treasure: Waste eggshells as chemical reactors for the synthesis of amorphous Co(OH)2 nanorod arrays on various substrates for applications in rechargeable alkaline batteries and electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 5244–5253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Li, C.; Xu, Q.; Yan, J.; Li, Y.; Yuan, P.; Xia, H.; Niu, C.; Yang, X.; Jia, Y. Two-dimensional amorphous heterostructures of Ag/a-WO3- for high-efficiency photocatalytic performance. Appl. Catal. B Environ. 2019, 245, 648–655. [Google Scholar] [CrossRef]
- Trzciński, K.; Szkoda, M.; Herman, A.; Borowska-Centkowska, A.; Lisowska-Oleksiak, A. Does the low optical band gap of yellow Bi3YO6 guarantee the photocatalytical activity under visible light illumination? J. Solid State Electrochem. 2018, 22, 2095–2105. [Google Scholar] [CrossRef] [Green Version]
- Zhuiykov, S.; Kats, E. Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a two-step sol-gel-exfoliation method. Nanoscale Res. Lett. 2014, 9, 401. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Li, F.; Liu, L. Liquid exfoliation of Zn–Al layered double hydroxide using NaOH/urea aqueous solution at low temperature. RSC Adv. 2014, 4, 18044. [Google Scholar] [CrossRef]
- Mehmood, F.; Iqbal, J.; Gul, A.; Ahmed, W.; Ismail, M. Facile synthesis of 2-D Cu doped WO3 nanoplates with structural, optical and differential anti cancer characteristics. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 88, 188–193. [Google Scholar] [CrossRef]
- Etman, A.S.; Abdelhamid, H.N.; Yuan, Y.; Wang, L.; Zou, X.; Sun, J. Facile water-based strategy for synthesizing MoO3–x nanosheets: Efficient visible light photocatalysts for dye degradation. ACS Omega 2018, 3, 2193–2201. [Google Scholar] [CrossRef] [Green Version]
- Songara, S.; Gupta, V.; Patra, M.K.; Singh, J.; Saini, L.; Gowd, G.S.; Vadera, S.R.; Kumar, N. Tuning of crystal phase structure in hydrated WO3 nanoparticles under wet chemical conditions and studies on their photochromic properties. J. Phys. Chem. Solids 2012, 73, 851–857. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Vijayaraghavan, A.; Ham, M.-H.; Zheng, H.; Breedon, M.; Strano, M.S. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 2010, 22, 5660–5666. [Google Scholar] [CrossRef]
- Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Waller, M.R.; Townsend, T.K.; Zhao, J.; Sabio, E.M.; Chamousis, R.L.; Browning, N.D.; Osterloh, F.E. Single-crystal tungsten oxide nanosheets: Photochemical water oxidation in the quantum confinement regime. Chem. Mater. 2012, 24, 698–704. [Google Scholar] [CrossRef]
- Guan, G.; Xia, J.; Liu, S.; Cheng, Y.; Bai, S.; Tee, S.Y.; Zhang, Y.W.; Han, M. Electrostatic-driven exfoliation and hybridization of 2D nanomaterials. Adv. Mater. 2017, 29, 1700326. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zhang, J.; Zhou, Y.; Xie, J.; Zhang, X.; Guan, M.; Pan, B.; Xie, Y. High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navío, C.; Vallejos, S.; Stoycheva, T.; Llobet, E.; Correig, X.; Snyders, R.; Blackman, C.; Umek, P.; Ke, X.; Van Tendeloo, G.; et al. Gold clusters on WO3 nanoneedles grown via AACVD: XPS and TEM studies. Mater. Chem. Phys. 2012, 134, 809–813. [Google Scholar] [CrossRef]
- Cárdenas, R.; Torres, J.; Alfonso, J. Optical characterization of MoO3 thin films produced by continuous wave CO2 laser-assisted evaporation. Thin Solid Films 2005, 478, 146–151. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Ruan, M.; Guo, Z.; Li, X. 1D WO3 Nanorods/2D WO3−x nanoflakes homojunction structure for enhanced charge separation and transfer towards efficient photoelectrochemical performance. ChemSusChem 2019, 12, 5282–5290. [Google Scholar] [CrossRef]
- Li, S.; Yao, Z.; Zhou, J.; Zhang, R.; Shen, H. Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation. Mater. Lett. 2017, 195, 213–216. [Google Scholar] [CrossRef]
- Clatot, J.; Campet, G.; Zeinert, A.; Labrugere, C.; Nistor, M.; Rougier, A. Low temperature Si doped ZnO thin films for transparent conducting oxides. Sol. Energy Mater. Sol. Cells 2011, 95, 2357–2362. [Google Scholar] [CrossRef]
- Luo, Z.; Poyraz, A.S.; Kuo, C.-H.; Miao, R.; Meng, Y.; Chen, S.-Y.; Jiang, T.; Wenos, C.; Suib, S.L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 2014, 27, 6–17. [Google Scholar] [CrossRef]
- Shpak, A.; Korduban, A.; Medvedskij, M.; Kandyba, V. XPS studies of active elements surface of gas sensors based on WO3−x nanoparticles. J. Electron Spectrosc. Relat. Phenom. 2007, 156, 172–175. [Google Scholar] [CrossRef]
- Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D.A.; Wenzel, S.; Janek, J.; Elm, M.T.; Klar, P.J. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 2015, 17, 15903–15911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Ma, S.; Shen, Y.; Ren, Q.; Yang, J.; Chen, X.; Hu, J.; Ren, R. CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors. Chem. Eng. J. 2019, 369, 363–369. [Google Scholar] [CrossRef]
- Raj, S.; Srivastava, S.K.; Kar, P.; Roy, P. In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochim. Acta 2019, 302, 327–337. [Google Scholar] [CrossRef]
- Shinde, P.A.; Lokhande, A.C.; Chodankar, N.; Patil, A.M.; Kim, J.H.; Lokhande, C.D. Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochim. Acta 2017, 224, 397–404. [Google Scholar] [CrossRef]
- Ramadoss, A.; Kim, S.-J. Improved activity of a graphene—TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 2013, 63, 434–445. [Google Scholar] [CrossRef]
- Ahuja, P.; Ujjain, S.K.; Kanojia, R. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor. Appl. Surf. Sci. 2018, 427, 102–111. [Google Scholar] [CrossRef]
- Du, D.; Lan, R.; Xu, W.; Beanland, R.; Wang, H.; Tao, S. Preparation of a hybrid Cu2O/CuMoO4 nanosheet electrode for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 17749–17756. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.P.; Patil, V.B.; Tarwal, N.L.; Bhame, S.D.; Gosavi, S.W.; Mulla, I.S.; Late, D.J.; Suryavanshi, S.S.; Walke, P. Enhanced energy density and stability of self-assembled cauliflower of Pd doped monoclinic WO3 nanostructure supercapacitor. Mater. Chem. Phys. 2019, 225, 192–199. [Google Scholar] [CrossRef]
- Nayak, A.K.; Das, A.K.; Pradhan, D. High performance solid-state asymmetric supercapacitor using green synthesized graphene—WO3 nanowires nanocomposite. ACS Sustain. Chem. Eng. 2017, 5, 10128–10138. [Google Scholar] [CrossRef]
- Shinde, P.A.; Lokhande, V.C.; Patil, A.M.; Ji, T.; Lokhande, C.D. Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor. Int. J. Hydrog. Energy 2018, 43, 2869–2880. [Google Scholar] [CrossRef]
- Szkoda, M.; Trzciński, K.; Klein, M.; Siuzdak, K.; Lisowska-Oleksiak, A. The influence of photointercalaction and photochromism effects on the photocatalytic properties of electrochemically obtained maze-like MoO3 microstructures. Sep. Purif. Technol. 2018, 197, 382–387. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Uchaker, E.; Pei, Y.; Cao, G.; Huang, B. Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high-performance lithium-ion batteries. ChemNanoMat 2016, 2, 281–289. [Google Scholar] [CrossRef]
- Pathak, R.; Gurung, A.; Elbohy, H.; Chen, K.; Reza, K.M.; Bahrami, B.; Mabrouk, S.; Ghimire, R.; Hummel, M.; Gua, Z.; et al. Self-recovery in Li-metal hybrid lithium-ion batteries via WO3 reduction. Nanoscale 2018, 10, 15956–15966. [Google Scholar] [CrossRef] [PubMed]
- Hibino, M.; Han, W.; Kudo, T. Electrochemical lithium intercalation into a hexagonal WO3 framework and its structural change. Solid State Ion. 2000, 135, 61–69. [Google Scholar] [CrossRef]
Material | Method | Precursor | Solvent | Layer Thickness | Crystalline Phase | Ref. |
---|---|---|---|---|---|---|
WO3 Nanosheets | Mechanical exfoliation | WO3∙2H2O | - | 1.4–100 | m-WO3 | [53] |
WO3 Nanosheets | Alcohothermal exfoliation | WO3∙nH2O | Absolute ethanol | 8–20 | m-WO3 | [54] |
Nano-WO3 | Chemical exfoliation | Bi2W2O9 | Concentrated hydrochloric acid; tetramethylammonium hydroxide solution | 0.75 | WO3∙0.5H2O | [55] |
WO3 Nanosheets | Electrostatic-driven exfoliation | WO3 powder | BSA solution (pH 6-4) | 1.4; 2.1 | m-WO3 | [56] |
WO3∙2H2O Nanosheets | Ultrasonic exfoliation (intercalation with dodecylamine) | H2WO4 | Concentrated nitric acid solution | 1.4 | WO3∙2H2O | [57] |
WO3 Nanoflakes | Water exfoliation | Bulk WO3 | Water | 60–80 | Amorphous | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkoda, M.; Zarach, Z.; Trzciński, K.; Trykowski, G.; Nowak, A.P. An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors. Materials 2020, 13, 1925. https://doi.org/10.3390/ma13081925
Szkoda M, Zarach Z, Trzciński K, Trykowski G, Nowak AP. An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors. Materials. 2020; 13(8):1925. https://doi.org/10.3390/ma13081925
Chicago/Turabian StyleSzkoda, Mariusz, Zuzanna Zarach, Konrad Trzciński, Grzegorz Trykowski, and Andrzej P. Nowak. 2020. "An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors" Materials 13, no. 8: 1925. https://doi.org/10.3390/ma13081925
APA StyleSzkoda, M., Zarach, Z., Trzciński, K., Trykowski, G., & Nowak, A. P. (2020). An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO3−x for Application in Supercapacitors. Materials, 13(8), 1925. https://doi.org/10.3390/ma13081925