Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Characterization
3.1.1. Hardness
3.1.2. Elastic Moduli
3.1.3. Flexure Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Somiya, S. Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties; Academic press: Cambridge, MA, USA, 2013. [Google Scholar]
- Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic steel? Nat. Cell Biol. 1975, 258, 703–704. [Google Scholar] [CrossRef]
- Chen, L.B. Yttria-Stabilized Zirconia Thermal Barrier Coatings—A Review. Surf. Rev. Lett. 2006, 13, 535–544. [Google Scholar] [CrossRef]
- Palmero, P.; Fornabaio, M.; Montanaro, L.; Reveron, H.; Esnouf, C.; Chevalier, J. Towards long lasting zirconia-based composites for dental implants. Part I: Innovative synthesis, microstructural characterization and in vitro stability. Biomaterials 2015, 50, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Arena, A.; Prete, F.; Rambaldi, E.; Bignozzi, M.; Monaco, C.; Di Fiore, A.; Chevalier, J. Nanostructured Zirconia-Based Ceramics and Composites in Dentistry: A State-of-the-Art Review. Nanomaterials 2019, 9, 1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roitero, E.; Anglada, M.; Mücklich, F.; Jiménez-Piqué, E. Mechanical reliability of dental grade zirconia after laser patterning. J. Mech. Behav. Biomed. Mater. 2018, 86, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, J. What future for zirconia as a biomaterial? Biomaterials 2006, 27, 535–543. [Google Scholar] [CrossRef]
- Porwal, H.; Grasso, S.; Reece, M. Review of graphene-ceramic matrix composites. Adv. Appl. Ceram. 2013, 112, 443–454. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’Ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [Green Version]
- Faber, K.; Asefa, T.; Backhaus-Ricoult, M.; Brow, R.; Chan, J.Y.; Dillon, S.; Fahrenholtz, W.G.; Finnis, M.W.; Garay, J.E.; García, R.; et al. The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop. J. Am. Ceram. Soc. 2017, 100, 1777–1803. [Google Scholar] [CrossRef] [Green Version]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef]
- Malek, O.; González-Julián, J.; Vleugels, J.; Vanderauwera, W.; Lauwers, B.; Belmonte, M. Carbon nanofillers for machining insulating ceramics. Mater. Today 2011, 14, 496–501. [Google Scholar] [CrossRef]
- Ahmad, I.; Yazdani, B.; Zhu, Y. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites. Nanomaterials 2015, 5, 90–114. [Google Scholar] [CrossRef] [PubMed]
- Miranzo, P.; Belmonte, M.; Osendi, M.I. From bulk to cellular structures: A review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 2017, 37, 3649–3672. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gómez, A.; Ramírez, C.; Llorente, J.; Garcia, A.; Moreno, P.; Reveron, H.; Chevalier, J.; Osendi, M.; Belmonte, M.; Miranzo, P. Improved crack resistance and thermal conductivity of cubic zirconia containing graphene nanoplatelets. J. Eur. Ceram. Soc. 2020, 40, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, P.; Klimczyk, P.; Jaworska, L.; Stobierski, L.; Zientara, D.; Tran, K. Mechanical Properties of Pressure Sintered Alumina-Graphene Composites. Mater. Ceram. 2016, 68, 168–175. [Google Scholar]
- Ramirez, C.; Miranzo, P.; Belmonte, M.; Osendi, M.I.; Poza, P.; Vega-Diaz, S.M.; Terrones, M. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Ceram. Soc. 2014, 34, 161–169. [Google Scholar] [CrossRef]
- Obradovic, N.; Kern, F. Properties of 3Y-TZP zirconia ceramics with graphene addition obtained by spark plasma sintering. Ceram. Int. 2018, 44, 16931–16936. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, Y.; Chen, W.; Li, X.; Zheng, Q.; Li, K.; Guo, R. Fabrication and properties of in situ reduced graphene oxide-toughened zirconia composite ceramics. J. Am. Ceram. Soc. 2018, 101, 3498–3507. [Google Scholar] [CrossRef]
- Kun, P.; Tapasztó, O.; Wéber, F.; Balázsi, C. Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites. Ceram. Int. 2012, 38, 211–216. [Google Scholar] [CrossRef]
- Su, J.; Chen, Y.; Huang, Q. Graphene nanosheet-induced toughening of yttria-stabilized zirconia. Appl. Phys. A 2016, 123, 1–11. [Google Scholar] [CrossRef]
- Rincón, A.; Moreno, R.; Chinelatto, A.S.A.; Gutiérrez-González, C.F.; Rayón, E.; Salvador, M.D.; Borrell, A. Al2O3-3YTZP-Graphene multilayers produced by tape casting and spark plasma sintering. J. Eur. Ceram. Soc. 2014, 34, 2427–2434. [Google Scholar] [CrossRef]
- Vu, D.-T.; Han, Y.-H.; Chen, F.; Jin, D.; Schoenung, J.M.; Lee, D.-Y.; Duc-Thuan, V.; Young-Hwan, H.; Fei, C.; Dongqin, J.; et al. Graphene Nanoplatelets Reinforced ZrO2 Consolidated by Spark Plasma Sintering. Sci. Adv. Mater. 2016, 8, 312–317. [Google Scholar] [CrossRef]
- Tapasztó, O.; Puchy, V.; Horváth, Z.E.; Fogarassy, Z.; Bódis, E.; Károly, Z.; Balázsi, K.; Dusza, J.; Tapasztó, L. The Effect of Graphene Nanoplatelet Thickness on the Fracture Toughness of Si3N4 Composites. Ceram. Int. 2019, 45, 6858–6862. [Google Scholar] [CrossRef]
- Rutkowski, P.; Stobierski, L.; Zientara, D.; Jaworska, L.; Klimczyk, P.; Urbanik, M. The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites. J. Eur. Ceram. Soc. 2015, 35, 87–94. [Google Scholar] [CrossRef]
- Balázsi, K.; Furko, M.; Klimczyk, P.; Balázsi, C. Influence of Graphene and Graphene Oxide on Properties of Spark Plasma Sintered Si3N4 Ceramic Matrix. Ceramics 2020, 3, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Xu, C.; Xiao, G.; Yi, M.; Zhang, Y. Microstructure and anisotropy of mechanical properties of graphene nanoplate toughened Al2O3-based ceramic composites. Ceram. Int. 2016, 42, 16090–16095. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiao, G.; Yi, M.; Xu, C. Effect of graphene orientation on microstructure and mechanical properties of silicon nitride ceramics. Process. Appl. Ceram. 2018, 12, 27–35. [Google Scholar] [CrossRef]
- Cinar, A.; Baskut, S.; Seyhan, A.T.; Turan, S. Tailoring the properties of spark plasma sintered SiAlON containing graphene nanoplatelets by using different exfoliation and size reduction techniques: Anisotropic mechanical and thermal properties. J. Eur. Ceram. Soc. 2018, 38, 1299–1310. [Google Scholar] [CrossRef]
- Michálková, M.; Kašiarová, M.; Tatarko, P.; Dusza, J.; Šajgalík, P. Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites. J. Eur. Ceram. Soc. 2014, 34, 3291–3299. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Kostecki, M.; Adamczyk-Cieślak, B.; Olszyna, A. Influence of graphene addition and sintering temperature on physical properties of Si3N4 matrix composites. Int. J. Refract. Met. Hard Mater. 2016, 57, 19–23. [Google Scholar] [CrossRef]
- Cui, E.; Zhao, J.; Wang, X. Determination of Microstructure and Mechanical Properties of Graphene Reinforced Al2O3-Ti (C, N) Ceramic Composites. Ceram. Int. 2019, 45, 20593–20599. [Google Scholar] [CrossRef]
- López-Pernía, C.; Muñoz-Ferreiro, C.; González-Orellana, C.; Morales-Rodríguez, A.; Gallardo-López, A.; Poyato, R. Optimizing the homogenization technique for graphene nanoplatelet/yttria tetragonal zirconia composites: Influence on the microstructure and the electrical conductivity. J. Alloy. Compd. 2018, 767, 994–1002. [Google Scholar] [CrossRef]
- Test Method for Density Determination for Powder Metallurgy (PM) Materials Containing Less Than Two Percent Porosity; B 311-93/02; ASTM International: West Conshohocken, PA, USA, 1993.
- Askeland, D.R.; Fulay, P.P.; Wright, W.J. The Science and Engineering of Materials; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- ASTM C1327-15 Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics 1. Test; ASTM International: West Conshohocken, PA, USA, 2003; pp. 1–10.
- Gaillard, Y.; Jimenez-Pique, E.; Soldera, F.; Mücklich, F.; Anglada, M. Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Mater. 2008, 56, 4206–4216. [Google Scholar] [CrossRef]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Gallardo-López, A.; Poyato, R.; Morales-Rodríguez, A.; Fernández-Serrano, A.; Munoz, A.; Domínguez-Rodríguez, A. Hardness and flexural strength of single-walled carbon nanotube/alumina composites. J. Mater. Sci. 2014, 49, 7116–7123. [Google Scholar] [CrossRef] [Green Version]
- Gallardo-López, A.; Márquez-Abril, I.; Morales-Rodríguez, A.; Muñoz, A.; Poyato, R. Dense graphene nanoplatelet/yttria tetragonal zirconia composites: Processing, hardness and electrical conductivity. Ceram. Int. 2017, 43, 11743–11752. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Ferreiro, C.; Morales-Rodríguez, A.; Rojas, T.; Jimenez-Pique, E.; López-Pernía, C.; Poyato, R.; Gallardo-López, A. Microstructure, interfaces and properties of 3YTZP ceramic composites with 10 and 20 vol % different graphene-based nanostructures as fillers. J. Alloy. Compd. 2019, 777, 213–224. [Google Scholar] [CrossRef]
- Rudolf, C.; Boesl, B.; Agarwal, A. In situ indentation behavior of bulk multi-layer graphene flakes with respect to orientation. Carbon 2015, 94, 872–878. [Google Scholar] [CrossRef]
- Seiner, H.; Ramírez, C.; Koller, M.; Sedlák, P.; Landa, M.; Miranzo, P.; Belmonte, M.; Osendi, M. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers. Mater. Des. 2015, 87, 675–680. [Google Scholar] [CrossRef]
- Gallardo-López, A.; Castillo-Seoane, J.; Muñoz-Ferreiro, C.; López-Pernía, C.; Morales-Rodríguez, A.; Poyato, R. Flexure Strength and Fracture Propagation in Zirconia Ceramic Composites with Exfoliated Graphene Nanoplatelets. Ceramics 2020, 3, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.C.; Pharr, G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Gaillard, Y.; Anglada, M.; Jimenez-Pique, E. Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms. J. Mater. Res. 2009, 24, 719–727. [Google Scholar] [CrossRef]
- Composite Materials: Testing and Design; ASTM International: West Conshohocken, PA, USA, 1969.
- Ramirez, C.; Wang, Q.; Belmonte, M.; Miranzo, P.; Osendi, M.I.; Sheldon, B.W.; Padture, N.P. Direct in situ observation of toughening mechanisms in nanocomposites of silicon nitride and reduced graphene-oxide. Scr. Mater. 2018, 149, 40–43. [Google Scholar] [CrossRef] [Green Version]
Composite | DGNP (µm) | s.d. (µm) | Dmax (µm) | dGNP (µm) | s.d. (µm) | A.R.GNP | s.d. | d3YTZP (µm) | s.d. |
---|---|---|---|---|---|---|---|---|---|
UA | 2.3 | 2.0 | 16.5 | 0.6 | 0.4 | 3.7 | 2.5 | 0.25 | 0.11 |
UA-W-PBM | 1.5 | 1.5 | 12.1 | 0.35 | 0.21 | 4.3 | 2.7 | 0.30 | 0.12 |
UA-D-PBM | 0.32 | 0.30 | 2.6 | 0.16 | 0.09 | 2.0 | 1.0 | 0.22 | 0.10 |
D-PBM | 0.39 | 0.22 | 1.6 | 0.18 | 0.08 | 2.2 | 0.8 | 0.18 | 0.07 |
Composite | GNP (vol %) | ρr (%) | H (GPa) Vickers | H (GPa) Nano | H (GPa) (Average) | |||
---|---|---|---|---|---|---|---|---|
In-Plane | c.s. | In-Plane | c.s. | Vickers | Nano | |||
UA | 9.5 | 99.7 ± 0.2 | 8.0 ± 0.9 | 9.5 ± 1.8 | 10 ± 3 | 11.0 ± 1.6 | 8.8 ± 0.8 | 10.4 ± 0.6 |
UA-W-PBM | 8.6 | 98.4 ± 1.1 | 9.5 ± 1.3 | 10.4 ± 0.7 | 12 ± 3 | 15 ± 3 | 10 ± 0.5 | 13 ± 3 |
UA-D-PBM | 12.8 | 98.3 ± 0.5 | 7.4 ± 1.4 | 7.9 ± 0.6 | 12.6 ± 2.1 | 12.6 ± 2.3 | 7.7 ± 1.4 | 12.6 ± 2.3 |
D-PBM | 10.1 | 95.9 ± 1.3 | 9.4 ± 0.9 | 9.4 ± 0.9 | 11.5 ± 1.2 | 13.9 ± 0.5 | 9.4 ± 0.9 | 12.7 ± 1.2 |
Specimen | Enano (GPa) (In-Plane) | Enano (GPa) (Cross-Section) | Enano (GPa) Average | Epulse (GPa) Average | Eflexure (GPa) Average |
---|---|---|---|---|---|
3YTZP | _ | _ | _ | 208 ± 12 [44] | 150 ± 30 |
UA | 170 ± 30 | 190 ± 13 | 180 ± 30 | 170 ± 9 | _ |
UA-W-PBM | 170 ± 16 | 220 ± 30 | 190 ± 30 | 158 ± 9 | _ |
UA-D-PBM | 174 ± 15 | 180 ± 20 | 180 ± 20 | 140 ± 14 | 130 ± 20 |
D-PBM | 174 ± 10 | 204 ± 5 | 190 ± 15 | 150 ± 8 | 110 ± 30 |
UA-D-PBM | D-PBM | |||
---|---|---|---|---|
Relative Density (%) | Relative Density (%) | UFS (MPa) | UFS (MPa) | |
95.7 ± 1.5 | 94.0 ± 0.5 | 273 | 361 | |
97.4 ± 0.4 | 98.1 ± 0.3 | 352 | 650 | |
97.3 ± 0.3 | 99.7 ± 0.3 | 379 | 606 | |
97.2 ± 0.3 | 99.1 ± 0.5 | 437 | 566 | |
Average | 96.9 ± 0.9 | 98 ± 3 | 360 ± 80 | 550 ± 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-López, Á.; Muñoz-Ferreiro, C.; López-Pernía, C.; Jiménez-Piqué, E.; Gutiérrez-Mora, F.; Morales-Rodríguez, A.; Poyato, R. Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets. Materials 2021, 14, 108. https://doi.org/10.3390/ma14010108
Gallardo-López Á, Muñoz-Ferreiro C, López-Pernía C, Jiménez-Piqué E, Gutiérrez-Mora F, Morales-Rodríguez A, Poyato R. Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets. Materials. 2021; 14(1):108. https://doi.org/10.3390/ma14010108
Chicago/Turabian StyleGallardo-López, Ángela, Carmen Muñoz-Ferreiro, Cristina López-Pernía, Emilio Jiménez-Piqué, Felipe Gutiérrez-Mora, Ana Morales-Rodríguez, and Rosalía Poyato. 2021. "Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets" Materials 14, no. 1: 108. https://doi.org/10.3390/ma14010108
APA StyleGallardo-López, Á., Muñoz-Ferreiro, C., López-Pernía, C., Jiménez-Piqué, E., Gutiérrez-Mora, F., Morales-Rodríguez, A., & Poyato, R. (2021). Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets. Materials, 14(1), 108. https://doi.org/10.3390/ma14010108