Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phonon Sideband Analysis
3.2. Near-Infrared Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lezal, D.; Pedlikova, J.; Kostka, P.; Bludska, J.; Poulain, M.; Zavadil, J. Heavy metal oxide glasses: Preparation and physical properties. J. Non-Cryst. Solids 2001, 284, 288–295. [Google Scholar] [CrossRef]
- Jayasankar, C.K.; Venkatramu, V.; Surendra Babu, S.; Babu, P. Luminescence properties of Dy3+ ions in a variety of borate and fluoroborate glasses containing lithium, zinc, and lead. J. Alloys Compd. 2004, 374, 22–26. [Google Scholar] [CrossRef]
- Culea, E.; Pop, L.; Bosca, M. Structural and physical characteristics of CeO2–GeO2–PbO glasses and glass ceramics. J. Alloys Compd. 2010, 505, 754–757. [Google Scholar] [CrossRef]
- Pisarska, J.; Zur, L.; Pisarski, W.A. Optical spectroscopy of Dy3+ ions in heavy metal lead-based glasses and glass-ceramics. J. Mol. Struct. 2011, 993, 160–166. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Grobelny, Ł.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses. J. Alloys Compd. 2011, 509, 8088–8092. [Google Scholar] [CrossRef]
- Zur, L.; Sołtys, M.; Pisarska, J.; Pisarski, W.A. Absorption and luminescence properties of terbium ions in heavy metal glasses. J. Alloys Compd. 2013, 578, 512–516. [Google Scholar] [CrossRef]
- Ersundu, A.E.; Çelikbilek, M.; Baazouzi, M.; Soltani, M.T.; Troles, J.; Aydin, S. Characterization of new Sb2O3-based multicomponent heavy metal oxide glasses. J. Alloys Compd. 2014, 615, 712–718. [Google Scholar] [CrossRef]
- Kostka, P.; Ivanova, Z.G.; Nouadji, M.; Cernošková, E.; Zavadil, J. Er-doped antimonite Sb2O3-PbO-ZnO/ZnS glasses studied by low-temperature photoluminescence spectroscopy. J. Alloys Compd. 2019, 780, 866–872. [Google Scholar] [CrossRef]
- Schneider, R.; Schneider, R.; de Campos, E.A.; Mendes, J.B.S.; Felix, J.F.; Santa-Cruz, P.A. Lead–germanate glasses: An easy growth process for silver nanoparticles and their promising applications in photonics and catalysis. RSC Adv. 2017, 7, 41479–41485. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Bei, J.; Ahmed, N.; Ng, A.K.L.; Ebendorff-Heidepriem, H. Development of low-loss lead-germanate glass for mid-infrared fiber optics: I. glass preparation optimization. J. Amer. Ceram. Soc. 2021, 104, 860–876. [Google Scholar] [CrossRef]
- Wang, P.; Ng, A.K.L.; Dowler, A.; Ebendorff-Heidepriem, H. Development of low-loss lead-germanate glass for mid-infrared fiber optics: II. preform extrusion and fiber fabrication. J. Amer. Ceram. Soc. 2021, 104, 833–850. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Yiannopoulos, Y.D.; Karakassides, M.A.; Chryssikos, G.D.; Jain, H. Raman and infrared structural investigation of xRb2O-(1-x)GeO2 glasses. J. Phys. Chem. 1996, 100, 11755–11765. [Google Scholar] [CrossRef]
- Barney, E.R.; Hannon, A.C.; Laorodphan, N.; Holland, D. Influence of Lone-Pair Cations on the Germanate Anomaly in Glass. J. Phys. Chem. C 2011, 115, 14997–15007. [Google Scholar] [CrossRef]
- Rada, S.; Culea, E.; Rada, M. Towards understanding of the germanate anomaly in europium- lead-germanate glasses. J. Non-Cryst. Solids 2010, 356, 1277–1281. [Google Scholar] [CrossRef]
- Rada, M.; Aldea, N.; Wu, Z.H.; Jing, Z.; Rada, S.; Culea, E.; Macavei, S.; Balan, R.; Suciu, R.C.; Erhan, R.V.; et al. Evolution of the germanium–oxygen coordination number in lithium–lead–germanate glasses. J. Non-Cryst. Solids 2016, 437, 10–16. [Google Scholar] [CrossRef]
- Kodama, M.; Kojima, S.; Feller, S.; Affatigato, M. Borate anomaly, anharmonicity and fragility in lithium borate glasses. Phys. Chem. Glasses 2005, 46, 190–193. [Google Scholar]
- Sørensen, S.S.; Johra, H.; Mauro, J.C.; Bauchy, M.; Smedskjaer, M.M. Boron anomaly in the thermal conductivity of lithium borate glasses. Phys. Rev. Mater. 2019, 3, 075601. [Google Scholar]
- Gunji, R.M.; Mattos, G.R.S.; Bordon, C.D.S.; Gomez-Malagon, L.A.; Kassab, L.R.P. Efficiency enhancement of silicon solar cells covered by GeO2-PbO glasses doped with Eu3+ and TiO2 nanoparticles. J. Lumin. 2020, 223, 117244. [Google Scholar] [CrossRef]
- Khalid, M.; Lancaster, D.G.; Ebendorff-Heidepriem, H. Spectroscopic analysis and laser simulations of Yb3+/Ho3+ co-doped lead-germanate glass. Opt. Mater. Express 2020, 10, 2819–2833. [Google Scholar] [CrossRef]
- Sun, Y.; Xin, W.; Meisong, L.; Hu, L.; Guzik, M.; Boulon, G.; Xia, L.; Kuan, P.-W.; Weiqinge, G.; Wang, T. Compositional dependence of Stark splitting and spectroscopic properties in Yb3+-doped lead silicate glasses. J. Non-Cryst. Solids 2020, 532, 119890. [Google Scholar] [CrossRef]
- Venkata Rao, K.; Babu, S.; Balanarayana, C.; Ratnakaram, Y.C. Comparative impact of Nd3+ ion doping concentration on near-infrared laser emission in lead borate glassy materials. Optik 2020, 202, 163562. [Google Scholar] [CrossRef]
- Deopa, N.; Sahu, M.K.; Rani, P.R.; Punia, R.; Rao, A.S. Realization of warm white light and energy transfer studies of Dy3+/Eu3+ co-doped Li2O-PbO-Al2O3-B2O3 glasses for lighting applications. J. Lumin. 2020, 222, 117166. [Google Scholar] [CrossRef]
- Maity, A.; Jana, S.; Ghosh, S.; Sharma, S. Spectroscopic investigation on europium (Eu3+) doped strontium zinc lead phosphate glasses with varied ZnO and PbO compositions. J. Non-Cryst. Solids 2020, 550, 120322. [Google Scholar] [CrossRef]
- Basavapoornima, C.; Kesavulu, C.R.; Maheswari, T.; Pecharapa, W.; Depuru, S.R.; Jayasankar, C.K. Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. J. Lumin. 2020, 228, 117585. [Google Scholar] [CrossRef]
- Marzouk, M.A.; Fayad, A.M. Heavy metal oxide glass responses for white light emission. J. Mater. Sci. Mater. Electron. 2020, 31, 14502–14511. [Google Scholar] [CrossRef]
- Liu, X.; Huang, F.; Gao, S.; Wang, X.; Hu, L.; Chen, D. Compositional investigation of ∼2 μm luminescence of Ho3+-doped lead silicate glass. Mater. Res. Bull. 2015, 71, 11–15. [Google Scholar] [CrossRef]
- Liu, X.; Kuan, P.; Li, D.; Gao, S.; Wang, X.; Zhang, L.; Hu, L.; Chen, D. Heavily Ho3+-doped lead silicate glass fiber for ~2 μm fiber lasers. Opt. Mater. Express 2016, 6, 1093–1098. [Google Scholar] [CrossRef]
- Tang, G.; Zhu, T.; Liu, W.; Lin, W.; Qiao, T.; Sun, M.; Chen, D.; Qian, Q.; Yang, Z. Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications. Opt. Mater. Express 2016, 6, 2147–2157. [Google Scholar] [CrossRef]
- Zhu, T.; Tang, G.; Chen, X.; Sun, M.; Qian, Q.; Chen, D.; Yang, Z. Two micrometer fluorescence emission and energy transfer in Yb3+/Ho3+ co-doped lead silicate glass. Int. J. Appl. Glass Sci. 2017, 8, 196–203. [Google Scholar] [CrossRef]
- Wang, N.; Cao, R.; Cai, M.; Shen, L.; Tian, Y.; Huang, F.; Xu, S.; Zhang, J. Ho3+/Tm3+ codoped lead silicate glass for 2 μm laser materials. Opt. Laser. Technol. 2017, 97, 364–369. [Google Scholar] [CrossRef]
- Pisarska, J.; Pisarski, W.A. Lanthanide—Doped lead borate glasses for optical applications: A review. In Chapter 4 in Handbook on Borates: Chemistry, Production and Applications; Chung, M.P., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 107–158. [Google Scholar]
- Pisarski, W.A.; Żur, L.; Pisarska, J. Optical transitions of Eu3+ and Dy3+ ions in lead phosphate glasses. Opt. Lett. 2011, 36, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Pisarski, W.A.; Pisarska, J.; Zur, L.; Goryczka, T. Structural and optical aspects for Eu3+ and Dy3+ ions in heavy metal glasses based on PbO–Ga2O3–XO2 (X = Te, Ge, Si). Opt. Mater. 2013, 35, 1051–1056. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Grobelny, Ł.; Lisiecki, R.; Ryba-Romanowski, W. Near-infrared luminescence and up-conversion processes of lanthanide ions in heavy metal glasses. Proc. SPIE 2011, 8001, 80012L. [Google Scholar]
- Ling, Z.; Ya-Xun, Z.; Shi-Xun, D.; Tie-Feng, X.; Qiu-Hua, N.; Xiang, S. Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses. Spectrochim. Acta A 2007, 68, 548–553. [Google Scholar] [CrossRef]
- Mao, L.Y.; Liu, J.L.; Li, L.X.; Wang, W.C. TeO2-Ga2O3-ZnO ternary tellurite glass doped with Tm3+ and Ho3+ for 2 μm fiber lasers. J. Non-Cryst. Solids 2020, 531, 119855. [Google Scholar] [CrossRef]
- Żur, L.; Pisarska, J.; Pisarski, W.A. Influence of PbF2 concentration on spectroscopic properties of Eu3+ and Dy3+ ions in lead borate glasses. J. Non-Cryst. Solids 2013, 377, 114–118. [Google Scholar] [CrossRef]
- Pisarska, J.; Pisarski, W.A.; Goryczka, T.; Lisiecki, R.; Ryba-Romanowski, W. Thermal analysis and near-infrared luminescence of Er3+-doped lead phosphate glasses modified byPbF2. J. Lumin. 2015, 160, 57–63. [Google Scholar] [CrossRef]
- Arunkumar, S.; Venkata Krishnaiah, K.; Marimuthu, K. Structural and luminescence behavior of lead fluoroborate glasses containing Eu3+ ions. Physica B 2013, 416, 88–100. [Google Scholar] [CrossRef]
- Priyanka, R.; Arunkumar, S.; Basavapoornima, Ch.; Mathelane, R.M.; Marimuthu, K. Structural and spectroscopic investigations on Eu3+ ions doped boro-phosphate glasses for optical display applications. J. Lumin. 2020, 220, 116964. [Google Scholar] [CrossRef]
- Roy, S.R.; Messaddeq, Y. Photoluminescence study of Eu3+ doped zinc-tungsten-antimonite glasses for red LED applications. J. Lumin. 2020, 228, 117608. [Google Scholar] [CrossRef]
- Marcondes, L.M.; Santagneli, S.H.; Manzani, D.; Cassanjes, F.C.; Batista, G.; Mendoza, V.G.; da Cunha, C.R.; Poirier, G.Y.; Nalin, M. High tantalum oxide content in Eu3+-doped phosphate glass and glass-ceramics for photonic applications. J. Alloys Compd. 2020, 842, 155853. [Google Scholar] [CrossRef]
- Rajesh, M.; Reddy, G.R.; Sushma, N.J.; Devarajulu, G.; Deva Prasad Raju, B. Phonon sideband analysis, structural and spectroscopic properties of Eu3+ ions embedded SiO2–B2O3–CaF2–NaF–Na2O glasses. Opt. Mater. 2020, 107, 110038. [Google Scholar] [CrossRef]
- Manasa, P.; Jayasankar, C.K. Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses. Opt. Mater. 2016, 62, 139–145. [Google Scholar] [CrossRef]
- Ramachari, D.; Rama Moorthy, L.; Jayasankar, C.K. Phonon sideband spectrum and vibrational analysis of Eu3+-doped niobium oxyfluorosilicate glass. J. Lumin. 2013, 143, 674–679. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Żur, L.; Goryczka, T.; Sołtys, M.; Pisarska, J. Structure and spectroscopy of rare earth—Doped lead phosphate glasses. J. Alloys Compd. 2014, 587, 90–98. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO-Ga2O3-XO2 (X = Ge, Si) glasses. Opt. Mater. 2016, 59, 87–90. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Lisiecki, R.; Grobelny, Ł.; Dominiak-Dzik, G.; Ryba-Romanowski, W. Erbium-doped oxide and oxyhalide lead borate glasses for near-infrared broadband optical amplifiers. Chem. Phys. Lett. 2009, 472, 217–219. [Google Scholar] [CrossRef]
- Bradley, J.D.B.; Pollnau, M. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev. 2011, 5, 368–403. [Google Scholar] [CrossRef]
- Layne, C.B.; Lowdermilk, W.H.; Weber, M.J. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys. Rev. B 1977, 16, 10–20. [Google Scholar] [CrossRef]
- Jackson, S.D.; Jain, R.K. Fiber-based sources of coherent MIR radiation: Key advances and future prospects. Opt. Express 2020, 28, 30964–31019. [Google Scholar] [CrossRef]
- de Oliveira, M., Jr.; Gonçalves, T.S.; Ferrari, C.; Magon, C.J.; Pizani, P.S.; de Camargo, A.S.S.; Eckert, H. Structure−property relations in fluorophosphate glasses: An integrated spectroscopic strategy. J. Phys. Chem. C 2017, 121, 2968–2986. [Google Scholar] [CrossRef]
- de Oliveira, M., Jr.; Uesbeck, T.; Gonçalves, T.S.; Magon, C.J.; Pizani, P.S.; de Camargo, A.S.S.; Eckert, H. Network structure and rare-earth ion local environments in fluoride phosphate photonic glasses studied by solid-state NMR and electron paramagnetic resonance spectroscopies. J. Phys. Chem. C 2015, 119, 24574–24587. [Google Scholar] [CrossRef]
- Koudelka, L.; Kalenda, P.; Mošner, P.; Montagne, L.; Revel, B. Structure–property relationships in barium borophosphate glasses modified with niobium oxide. J. Non-Cryst. Solids 2016, 437, 64–71. [Google Scholar] [CrossRef]
- Doerenkamp, C.; Carvajal, E.; Magon, C.J.; Faria, W.J.G.J.; Pedro Donoso, J.; Galvão Gobato, Y.; de Camargo, A.S.S.; Eckert, H. Composition−structure−property correlations in rare-earth-doped heavy metal oxyfluoride glasses. J. Phys. Chem. C 2019, 123, 22478–22490. [Google Scholar] [CrossRef]
Heavy Metal Glass Host | PSB—PET [cm−1] |
---|---|
PbO-Ga2O3-GeO2 | 775 |
PbO-Ga2O3-SiO2 | 950 |
PbO-Ga2O3-P2O5 | 1117 |
PbO-Ga2O3-B2O3 | 1320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisarska, J.; Pisarski, W.A.; Lisiecki, R.; Ryba-Romanowski, W. Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses. Materials 2021, 14, 121. https://doi.org/10.3390/ma14010121
Pisarska J, Pisarski WA, Lisiecki R, Ryba-Romanowski W. Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses. Materials. 2021; 14(1):121. https://doi.org/10.3390/ma14010121
Chicago/Turabian StylePisarska, Joanna, Wojciech A. Pisarski, Radosław Lisiecki, and Witold Ryba-Romanowski. 2021. "Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses" Materials 14, no. 1: 121. https://doi.org/10.3390/ma14010121
APA StylePisarska, J., Pisarski, W. A., Lisiecki, R., & Ryba-Romanowski, W. (2021). Phonon Sideband Analysis and Near-Infrared Emission in Heavy Metal Oxide Glasses. Materials, 14(1), 121. https://doi.org/10.3390/ma14010121