Experimental Study on Dynamic Splitting Characteristics of Carbon Fiber Reinforced Concrete
Abstract
:1. Introduction
2. Experimental Procedure and Methods
2.1. Materials and Specimens Preparation
2.2. Test Methods
2.2.1. Static Test
2.2.2. Dynamic Test
3. Test Results and Analysis
3.1. Static Test
3.2. Dynamic Splitting Tensile Test
3.2.1. Analysis on Typical Waveform Curve
3.2.2. Failure Process of Specimen
3.2.3. Dynamic Stress Time-History of CFRC
3.2.4. Dynamic Tensile Strength of CFRC
4. Discussion
5. Conclusions
- With the increase of fiber content, the static tensile strength of CFRC increases obviously, but the increased amplitude tends to decrease. From the perspective of failure morphology, both CG and CFRC specimens show the characteristics of brittle failure. Under static load, carbon fiber does not significantly improve the ductility of concrete specimens.
- When the fiber content is constant, the dynamic tensile strength and DIF both increase with the increase of stress rate, which has an obvious rate effect, but the growth rate becomes slower. Contrary to static loading, the addition of carbon fiber makes the dynamic tensile strength and DIF of CFRC lower than CG, but the failure form shows certain ductility characteristics.
- CG and CFRC specimens show a similar rate sensitivity trend, and the DIF value of the specimen increases linearly with the increase of the logarithm of the stress rate. Besides, CG specimens have higher rate sensitivity than CFRC, and the rate sensitivity does not decrease only with the increase of carbon fiber content.
- The static tensile strength of CFRC is significantly improved, and the tension–compression ratio of concrete is increased, which is of great significance to concrete. This improvement reduces the risk of unpredicted damage to concrete structures, which means that it has a wide application prospect. But the addition of carbon fiber has a negative effect on dynamic tensile strength. Obviously, the content of carbon fiber should be selected according to the requirements of the application field, so that the compressive strength and tensile strength/impact resistance can be balanced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Lu, Z.H.; Zhang, Q.Y. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress. J. Tongji Univ. Nat. Sci. Ed. 2003, 31, 505–509. [Google Scholar]
- Dang, F.; Fang, J.; Ding, W. Fractal comparison research of fracture of concrete samples under static and dynamic uniaxial tensile using CT. Chin. J. Rock Mech. Eng. 2015, 2922–2928. [Google Scholar]
- Georgin, J.F.; Reynouard, J.M. Modeling of structures subjected to impact: Concrete behaviour under high strain rate. Cem. Concr. Compos. 2003, 25, 131–143. [Google Scholar] [CrossRef]
- Parameswaran, V.S. Fibre-reinforced concrete: A versatile construction material. Build. Environ. 1991, 26, 301–305. [Google Scholar] [CrossRef]
- Sahmaran, M.; Yurtseven, A.; Yaman, I.O. Workability of hybrid fiber reinforced self-compacting concrete. Build. Environ. 2005, 40, 1672–1677. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid short fiber reinforcement system in concrete: A review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Constr. Build. Mater. 2013, 48, 521–532. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Pan, Z.; Chang, W.; Liu, J.; Wang, W.; Liu, J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVAECC). Constr. Build. Mater. 2015, 78, 397–404. [Google Scholar] [CrossRef]
- Silva, E.R.; Coelho, J.F.J.; Bordado, J.C. Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology. Constr. Build. Mater. 2013, 40, 473–480. [Google Scholar] [CrossRef]
- Zheng, Q.Q.; Cheng, Y.H.; Zong, Q.; Xu, Y.; Li, F.H.; Chen, P.Y. Failure mechanism of different types of shotcrete based on modifified Weibull distribution model. Constr. Build. Mater. 2019, 224, 306–316. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.B.; Jin, L.; Du, X.L.; Wu, J.; Duan, W.H. Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures. Constr. Build. Mater. 2019, 210, 673–684. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Z.B.; Tian, Y.D.; Dou, G.Q.; Du, X.L. Experimental investigation on static and dynamic mechanical properties of steel fiber reinforced ultra-high-strength concretes. Constr. Build. Mater. 2018, 178, 102–111. [Google Scholar] [CrossRef]
- Li, X.J.; Zhang, Y.Y.; Shi, C.; Chen, X.D. Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension. Constr. Build. Mater. 2020, 259, 119796. [Google Scholar] [CrossRef]
- Chi, Y.; Yu, M.; Huang, L.; Xu, L. Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity. Eng. Struct. 2017, 148, 23–35. [Google Scholar] [CrossRef]
- Caggiano, A.; Gambarelli, S.; Martinelli, E.; Nisticò, N.; Pepe, M. Experimental characterization of the post-cracking response in hybrid steel/polypropylene fiber-reinforced concrete. Constr. Build. Mater. 2016, 125, 1035–1043. [Google Scholar] [CrossRef]
- Ngo, T.T.; Kim, D.J. Shear stress versus strain responses of ultra-highperformance fiber-reinforced concretes at high strain rates. Int. J. Impact Eng. 2018, 111, 187–198. [Google Scholar] [CrossRef]
- Zahra, S.T.; Jeffery, S.V.; Jason, B.; Benjamin, P.G.; Darwin, I.K. Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading. Int. J. Impact Eng. 2013, 57, 70–80. [Google Scholar]
- Wen, S.H.; Chung, D.D.L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers. Cem. Concr. Res. 2000, 30, 1295–1298. [Google Scholar] [CrossRef]
- Chung, D.D.L. Carbon fiber reinforced cement mortar improved by using acrylic dispersion as admixture. Cem. Concr. Res. 2001, 31, 1633–1637. [Google Scholar]
- Deng, Y.S.; Wu, P.; Li, Z.Q.; Wang, H. Experimental study on detection of concrete beam by cement based carbon fiber smart layer. Sci. Technol. Eng. 2017, 6, 237–242. [Google Scholar]
- Liu, Y.; Wang, M.; Wang, W. Ohmic heating curing of electrically conductive carbon nanofiber/cementbased composites to avoid frost damage under severely low temperature. Compos. Part A Appl. Sci. Manuf. 2018, 115, 236–246. [Google Scholar] [CrossRef]
- Manuel, H.; Hendrik, M.; Thomas, N.; Dirk, V. Carbon fibre reinforced cement-based composites as smart floor heating materials. Compos. B. Eng. 2016, 90, 465–470. [Google Scholar]
- Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. B. Eng. 2017, 112, 74–92. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, Z.; Wang, C.; Xiong, Y.; Cai, C. Effects of short carbon fiber content on microstructure and mechanical property of short carbon fiber reinforced Nb/Nb5Si3 composites. Intermetallics 2019, 106, 59–64. [Google Scholar] [CrossRef]
- Zhou, M.; Cao, Q.K.; Song, K. Uniform test on short carbon fiber enhancing HPC. Concrete 2004, 10, 35–37. [Google Scholar]
- Zhou, L.; Wang, X.C.; Liu, H.T. Experimental study of stress-strain curve of carbon fiber reinforced concrete. Eng. Mech. 2013, 30, 200–204. [Google Scholar]
- Giner, V.T.; Baeza, F.J.; Ivorra, S.; Zornoza, E.; Galao, Ó. Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater. Des. 2012, 34, 332–339. [Google Scholar] [CrossRef]
- ASTM-International. Standard Specification for Chemical Admixtures for Concrete; ASTM C494; ASTM-International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Liu, J.F. Experimental Study on the Dynamic Compressive Mechanical Properties of High-Strength Concrete. Master’s Thesis, Hebei University of Technology, Tianjin, China, 2012. [Google Scholar]
- Lv, N.; Wang, H.B.; Zong, Q.; Wang, M.X.; Cheng, B. Dynamic tensile properties and energy dissipation of high-strength concrete after exposure to elevated temperatures. Materials 2020, 13, 5313. [Google Scholar] [CrossRef]
- Li, Q.; Meng, H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids Struct. 2003, 40, 343–360. [Google Scholar] [CrossRef]
- Hou, X.M.; Cao, S.J.; Rong, Q.; Zheng, W.Z.; Li, G. Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete. Constr. Build. Mater. 2018, 170, 570–581. [Google Scholar] [CrossRef]
- Yang, R.Z.; Xu, Y.; Chen, P.Y.; Wang, J. Experimental study on dynamic mechanics and energy evolution of rubber concrete under cyclic impact loading and dynamic splitting tension. Constr. Build. Mater. 2020, 262, 120071. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for Test Method of Mechanical Properties on Ordinary Concrete, GB/T 50082-2002; China Architecture & Building Press: Beijing, China, 2003.
- ASTM. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM C192/C192M–2012; ASTM-International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Erzar, B.; Forquin, P. An experimental method to determine the tensile strength of concrete at high rates of strain. Exp. Mech. 2010, 50, 941–955. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Q. About the dynamic uniaxial tensile strength of concrete-like materials. Int. J. Impact Eng. 2011, 36, 171–180. [Google Scholar] [CrossRef]
- Wright, P.J.F. Comments on an indirect tensile test on concrete cylinders. Mag. Concr. Res. 1955, 7, 87–96. [Google Scholar] [CrossRef]
- Wang, Q.; Xing, L. Determination of fracture roughness KIC by using the flattened Brazilian disk specimen for rocks. Eng. Fract. Mech. 1999, 64, 193–201. [Google Scholar] [CrossRef]
- Gomez, J.T.; Shukla, A.; Sharma, A. Static and dynamic behavior of concrete and granite in tension with damage. Theor. Appl. Fract. Mech. 2001, 36, 37–49. [Google Scholar] [CrossRef]
- Guo, Y.B.; Gao, G.F.; Jing, L.; Shim, V.P.W. Quasi-static and dynamic splitting of high-strength concretes–tensile stress–strain response and effects of strain rate. Int. J. Impact Eng. 2019, 125, 188–211. [Google Scholar] [CrossRef]
- Li, X.F.; Li, X.; Li, H.B.; Zhang, Q.B.; Zhao, J. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation. Int. J. Impact Eng. 2018, 118, 98–118. [Google Scholar] [CrossRef]
- Rossi, P.; Toutlemonde, F. Effect of loading rate on the tensile behavior of concrete: Description of the physical mechanisms. Mater. Struct. 1996, 29, 116–118. [Google Scholar] [CrossRef]
- Cusatis, G. Strain-rate effects on concrete behaviour. Int. J. Impact Eng. 2011, 38, 162–170. [Google Scholar] [CrossRef]
- Li, X.B. Rock Dynamics Fundamentals and Applications; Science Press: Beijing, China, 2014. [Google Scholar]
- Zhang, L.; Liu, J.; Liu, J.; Zhang, Q. Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate. J. Mater. Civ. Eng. 2018, 30, 04018323. [Google Scholar] [CrossRef]
- Long, G.; Li, N.; Xue, Y. Mechanical properties of self-compacting concrete incorporating rubber particles under impact load. J. Chin. Ceram. Soc. 2016, 44, 1081–1090. [Google Scholar]
- Gurusideswar, S.; Shukla, A.; Jonnalagadda, K.N.; Nanthagopalan, P. Tensile strength and failure of ultra-high performance concrete (UHPC) composition over a wide range of strain rates. Constr. Build. Mater. 2020, 114, 258. [Google Scholar] [CrossRef]
- Kim, D.J.L.; Tawil, S.E.; Naaman, A.E. Rate-dependent tensile behaviour of high performance reinforced cementitious composites. Mater. Struct. 2009, 42, 399–414. [Google Scholar] [CrossRef]
- Tran, T.K.; Kim, D.J. Investigating direct behaviour of high performance fibre reinforced cementitious composites at high strain rates. Cem. Concr. Res. 2013, 50, 62–73. [Google Scholar] [CrossRef]
- Li, W.M.; Xu, J.Y.; Zhai, Y.; Li, Q. Mechanical properties of carbon fiber reinforced concrete under impact loading. Chin. Civ. Eng. J. 2009, 42, 24–30. [Google Scholar]
Component | Density (kg·m−3) | BET (m2·g−1) | Chemical Composition (wt.%) (XRF) | |||||
---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | |||
Cement | 1910 | 1.477 | 31.31 | 1.94 | 0.9 | 0.23 | 43.49 | 0.29 |
Silica fume | 310 | 23.7 | 0.8 | 97 | 0.6 | 0.1 | 1.0 | - |
Fluoride | Nitrate | Chlorite | Chloride | Sulfate | Mn | Cu | Zn | Al | Fe | Pb | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
0.38 | 8.81 | 0.15 | 70.8 | 31.2 | <0.05 | <0.05 | <0.05 | <0.007 | <0.05 | <0.0025 | 7.76 |
Tensile Strength (MPa) | Density (kg·m−3) | Tensile Modulus (GPa) | Elongation (%) | Length (mm) |
---|---|---|---|---|
3530 | 1760 | 230 | 1.5 | 20 |
Specimen Type | Cement | Water | Fine Aggregate | Coarse Aggregate | Coal Ash | Silica Fume | Water Reducing Agent | Rubber | Carbon Fiber |
---|---|---|---|---|---|---|---|---|---|
CG | 385.9 | 154.36 | 699 | 1140 | 45.4 | 22.7 | 7.8 | 9.08 | 0 |
CFRC0.1 | 385.9 | 154.36 | 699 | 1140 | 45.4 | 22.7 | 7.8 | 9.08 | 1.8 |
CFRC0.2 | 385.9 | 154.36 | 699 | 1140 | 45.4 | 22.7 | 7.8 | 9.08 | 3.6 |
CFRC0.3 | 385.9 | 154.36 | 699 | 1140 | 45.4 | 22.7 | 7.8 | 9.08 | 5.4 |
Specimen Number | Carbon Fiber Content (%) | Stress Rate (GPa·s−1) | Dynamic Tensile Strength (MPa) | Static Tensile Strength (MPa) | Dynamic In-Crease Factor (DIF) |
---|---|---|---|---|---|
CG-1 | 0 | 143.42 | 14.41 | 3.35 | 4.30 |
CG-2 | 166.11 | 16.19 | 3.35 | 4.83 | |
CG-3 | 216.18 | 17.33 | 3.35 | 5.17 | |
CG-4 | 231.85 | 16.71 | 3.35 | 4.99 | |
CG-5 | 291.74 | 18.25 | 3.35 | 5.45 | |
CG-6 | 424.88 | 23.93 | 3.35 | 7.14 | |
CG-7 | 426.71 | 23.98 | 3.35 | 7.16 | |
CFRC0.1-1 | 0.1 | 101.69 | 12.03 | 4.23 | 2.84 |
CFRC0.1-2 | 116.08 | 12.20 | 4.23 | 2.88 | |
CFRC0.1-3 | 160.75 | 15.72 | 4.23 | 3.72 | |
CFRC0.1-4 | 199.27 | 17.17 | 4.23 | 4.06 | |
CFRC0.1-5 | 280.00 | 17.47 | 4.23 | 4.13 | |
CFRC0.1-6 | 320.83 | 19.73 | 4.23 | 4.66 | |
CFRC0.1-7 | 353.33 | 20.82 | 4.23 | 4.92 | |
CFRC0.1-8 | 450.44 | 21.97 | 4.23 | 5.19 | |
CFRC0.2-1 | 0.2 | 82.38 | 5.99 | 4.89 | 1.22 |
CFRC0.2-2 | 123.02 | 8.38 | 4.89 | 1.71 | |
CFRC0.2-3 | 144.87 | 8.27 | 4.89 | 1.69 | |
CFRC0.2-4 | 155.9 | 9.17 | 4.89 | 1.88 | |
CFRC0.2-5 | 232.84 | 10.93 | 4.89 | 2.24 | |
CFRC0.2-6 | 235.00 | 10.75 | 4.89 | 2.20 | |
CFRC0.2-7 | 246.32 | 11.30 | 4.89 | 2.31 | |
CFRC0.3-1 | 0.3 | 70.51 | 5.94 | 5.55 | 1.07 |
CFRC0.3-2 | 86.69 | 7.01 | 5.55 | 1.26 | |
CFRC0.3-3 | 87.41 | 6.56 | 5.55 | 1.18 | |
CFRC0.3-4 | 93.33 | 6.92 | 5.55 | 1.25 | |
CFRC0.3-5 | 137.93 | 11.26 | 5.55 | 2.03 | |
CFRC0.3-6 | 187.10 | 12.57 | 5.55 | 2.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.-Y.; Yang, J. Experimental Study on Dynamic Splitting Characteristics of Carbon Fiber Reinforced Concrete. Materials 2021, 14, 94. https://doi.org/10.3390/ma14010094
Chen Z-Y, Yang J. Experimental Study on Dynamic Splitting Characteristics of Carbon Fiber Reinforced Concrete. Materials. 2021; 14(1):94. https://doi.org/10.3390/ma14010094
Chicago/Turabian StyleChen, Zhan-Yang, and Jun Yang. 2021. "Experimental Study on Dynamic Splitting Characteristics of Carbon Fiber Reinforced Concrete" Materials 14, no. 1: 94. https://doi.org/10.3390/ma14010094
APA StyleChen, Z. -Y., & Yang, J. (2021). Experimental Study on Dynamic Splitting Characteristics of Carbon Fiber Reinforced Concrete. Materials, 14(1), 94. https://doi.org/10.3390/ma14010094