Comparison of Latest and Innovative Silica-Based Consolidants for Volcanic Stones
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Natural Stony Materials
2.1.2. Consolidant Products
2.1.3. Consolidating Treatments
2.2. Methods
2.2.1. Physical Characterization
2.2.2. Morphological Characterization
2.2.3. Chromatic Modifications
2.2.4. Peeling Test
2.2.5. Determination of Resistance to Salt Crystallization
3. Results and Discussion
3.1. Consolidant Absorption
3.2. Physical Characterization
3.3. Morphological Characterization
3.4. Chromatic Modifications
3.5. Peeling Test Results
3.6. Salt Crystallization Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fassina, V. Environmental pollution in relation to stone decay. Durab. Build. Mater. 1988, 5, 317–358. [Google Scholar]
- Rodriguez-Navarro, C.; Sebastian, E. Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci. Total Environ. 1996, 187, 79–91. [Google Scholar] [CrossRef]
- Fassina, V.; Favaro, M.; Naccari, A. Principal decay patterns on Venetian monuments. Geol. Soc. Spec. Publ. 2002, 205, 381–391. [Google Scholar] [CrossRef]
- Brimblecombe, P. The Effects of Air Pollution on the Built Environment; Imperial College Press: London, UK, 2003; Volume 2, ISBN 978-1-86094-291-4. [Google Scholar]
- Graue, B.; Siegesmund, S.; Oyhantcabal, P.; Naumann, R.; Licha, T.; Simon, K. The effect of air pollution on stone decay: The decay of the Drachenfels trachyte in industrial, urban, and rural environments-a case study of the Cologne, Altenberg and Xanten cathedrals. Environ. Earth Sci. 2013, 69, 1095–1124. [Google Scholar] [CrossRef] [Green Version]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage–An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Ivaskova, M.; Kotes, P.; Brodnan, M. Air pollution as an important factor in construction materials deterioration in Slovak Republic. Procedia Eng. 2015, 108, 131–138. [Google Scholar]
- Szczepaniak, M.; Ròj, P. Deterioration Process of Sandstone Panels in a Historic Building of the Royal-Imperial Route in Poznan, Poland-A Case Study. Prz. Geol. 2019, 67, 717–727. [Google Scholar]
- Winkler, E. Stone in Architecture: Properties, Durability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Steiger, M. Salts and crusts. In The Effects of Air Pollution on the Built Environment; Imperial College Press: London, UK, 2003; pp. 133–181. [Google Scholar]
- Grossi, C.M.; Brimblecombe, P.; Menéndez, B.; Benavente, D.; Harris, I.; Déqué, M. Climatology of salt transitions and implications for stone weathering. Sci. Total Environ. 2011, 409, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Maro, D.; Connan, O.; Flori, J.P.; Hébert, D.; Mestayer, P.; Olive, F.; Rosant, J.M.; Rozet, M.; Sini, J.F.; Solier, L. Aerosol dry deposition in the urban environment: Assessment of deposition velocity on building facades. J. Aerosol Sci. 2014, 69, 113–131. [Google Scholar] [CrossRef]
- Hall, C.M.; Baird, T.; James, M.; Ram, Y. Climate change and cultural heritage: Conservation and heritage tourism in the anthropocene. J. Herit. Tour. 2016, 11, 10–24. [Google Scholar] [CrossRef]
- Gibeaux, S.; Vázquez, P.; De Kock, T.; Cnudde, V.; Thomachot-Schneider, C. Weathering assessment under X-ray tomography of building stones exposed to acid atmospheres at current pollution rate. Constr. Build. Mater. 2018, 168, 187–198. [Google Scholar] [CrossRef]
- Price, C.A.; Doehne, E. Stone Conservation: An Overview of Current Research; Getty Publications: Los Angeles, CA, USA, 2011. [Google Scholar]
- Jroundi, F.; Schiro, M.; Ruiz-Agudo, E.; Elert, K.; Martín-Sánchez, I.; González-Muñoz, M.T.; Rodriguez-Navarro, C. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat. Commun. 2017, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, G.; Fakhrullin, R. Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128139110. [Google Scholar]
- Rives, V.; Talegon, J.G. Decay and Conservation of Building Stones on Cultural Heritage Monuments. Mater. Sci. Forum 2006, 514–516, 1689–1694. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.; Konstanti, A.; Roumpopoulos, K.; Bakolas, A.; Michailidis, P. Weathering. In Fracture and Failure of Natural Building Stones; Springer: Dordrecht, The Netherlands, 2006; pp. 291–297. [Google Scholar]
- Theodoridou, M.; Török, Á. In situ investigation of stone heritage sites for conservation purposes: A case study of the Székesfehérvár Ruin Garden in Hungary. Prog. Earth Planet. Sci. 2019, 6, 15. [Google Scholar] [CrossRef]
- Matteini, M. Inorganic treatments for the consolidation and protection of stone artefacts and mural paintings. Conserv. Sci. Cult. Herit. 2008, 8, 13–27. [Google Scholar] [CrossRef]
- Princi, E. Handbook of Polymers in Stone Conservation; Smithers Rapra: Akron, OH, USA, 2014. [Google Scholar]
- Siedel, H. Historic Building Stones and Flooding: Changes of Physical Properties due to Water Saturation. J. Perform. Constr. Facil. 2010, 24, 452–461. [Google Scholar] [CrossRef]
- Steiger, M.; Charola, A.E.; Sterflinger, K. Weathering and Deterioration. In Stone in Architecture; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Wedekind, W.; López-Doncel, R.; Dohrmann, R.; Kocher, M.; Siegesmund, S. Weathering of volcanic tuff rocks caused by moisture expansion. Environ. Earth Sci. 2013, 69, 1203–1224. [Google Scholar] [CrossRef] [Green Version]
- Alessandrini, G.; Aglietto, M.; Castelvetro, V.; Ciardelli, F.; Peruzzi, R.; Toniolo, L. Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone. J. Appl. Polym. Sci. 2000, 76, 962–977. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeová, B.; Panayiotou, C.; Tsakalof, A.; Zuburtikudis, I. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A 2009, 97, 351–360. [Google Scholar] [CrossRef]
- De Ferri, L.; Lottici, P.P.; Lorenzi, A.; Montenero, A.; Salvioli-Mariani, E. Study of silica nanoparticles-polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 2011, 12, 356–363. [Google Scholar] [CrossRef]
- Miliani, C.; Velo-Simpson, M.L.; Scherer, G.W. Particle-modified consolidants: A study on the effect of particles on sol-gel properties and consolidation effectiveness. J. Cult. Herit. 2007, 8, 1–6. [Google Scholar] [CrossRef]
- Sassoni, E.; Naidu, S.; Scherer, G.W. The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J. Cult. Herit. 2011, 12, 346–355. [Google Scholar] [CrossRef]
- Scherer, G.W.; Sassoni, E. Mineral Consolidants; AMS Acta: Bologna, Italy, 2016; ISBN 978-2-35158-178-0. [Google Scholar]
- Chen, W.; Dai, P.; Yuan, P.; Zhang, J. Effect of inorganic silicate consolidation on the mechanical and durability performance of sandstone used in historical sites. Constr. Build. Mater. 2016, 121, 445–452. [Google Scholar] [CrossRef]
- Wheeler, G. Alkoxysilanes and the Consolidation of Stone; Getty Publications: Akron, OH, USA, 2005. [Google Scholar]
- Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N.; Agioutantis, Z.; Maurigiannakis, S.; Korakaki, D. A comparative study of porous limestones treated with silicon-based strengthening agents. Prog. Org. Coat. 2008, 62, 49–60. [Google Scholar] [CrossRef]
- Franzoni, E.; Graziani, G.; Sassoni, E. TEOS-based treatments for stone consolidation: Acceleration of hydrolysis–condensation reactions by poulticing. J. Sol. Gel. Sci. Technol. 2015, 74, 398–405. [Google Scholar] [CrossRef]
- Manoudis, P.; Papadopoulou, S.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments. J. Phys. Conf. Ser. 2007, 61, 1361–1365. [Google Scholar] [CrossRef]
- Mosquera, M.J.; De Los Santos, D.M.; Montes, A.; Valdez-Castro, L. New nanomaterials for consolidating stone. Langmuir 2008, 24, 2772–2778. [Google Scholar] [CrossRef] [PubMed]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. J. Colloid Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef]
- Colangelo, F.; Cioffi, R.; Liguori, B.; Iucolano, F. Recycled polyolefins waste as aggregates for lightweight concrete. Composites Part B Engineering 2016, 106, 234–241. [Google Scholar] [CrossRef]
- Scherer, G.W.; Wheeler, G.S. Silicate consolidants for stone. Key Eng. Mater. 2009, 391, 1–25. [Google Scholar] [CrossRef]
- Thorn, A. Lithium silicate consolidation of wet stone and plaster. In Proceedings of the 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, NY, USA, 22–26 October 2012; pp. 1–10. [Google Scholar]
- Liguori, B.; Caputo, D.; Iucolano, F. Fiber-reinforced lime-based mortars: Effect of zeolite addition. Constr. Build. Mater. 2015, 77, 455–460. [Google Scholar] [CrossRef]
- Calcaterra, D.; Cappelletti, P.; Langella, A.; Colella, A.; de Gennaro, M. The ornamental stones of Caserta province: The Campanian Ignimbrite in the medieval architecture of Casertavecchia. J. Cult. Herit. 2004, 5, 137–148. [Google Scholar] [CrossRef]
- Özen, S.; Göncüoʇlu, M.C.; Liguori, B.; De Gennaro, B.; Cappelletti, P.; Gatta, G.D.; Iucolano, F.; Colella, C. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Constr. Build. Mater. 2016, 105, 46–61. [Google Scholar] [CrossRef]
- Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; Langella, A. The Neapolitan Yellow Tuff: An outstanding example of heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- de’ Gennaro, M.; Fuscaldo, M.D.; Colella, C. Weathering mechanisms of monumental tuff-stone masonries in downtown Naples. Sci. Technol. Cult. Herit. 1993, 2, 53–62. [Google Scholar]
- de’ Gennaro, M.; Colella, C.; Langella, A.; Cappelletti, P. Decay of Campanian ignimbrite stoneworks in some monuments of the Caserta area. Sci. Technol. Cult. Herit. 1995, 4, 75–86. [Google Scholar]
- Langella, A.; Calcaterra, D.; Cappelletti, P.; Colella, A.; de’ Gennaro, M.; de Gennaro, R. Preliminary contribution on durability of some macroporous monumental stones used in historical towns of Campania Region, Southern Italy. In Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice, Italy, 19–24 June 2000; pp. 59–67. [Google Scholar]
- Ruedrich, J.; Bartelsen, T.; Dohrmann, R.; Siegesmund, S. Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 2011, 63, 1545–1564. [Google Scholar] [CrossRef] [Green Version]
- Angeli, M.; Bigas, J.-P.; Benavente, D.; Menéndez, B.; Hébert, R.; David, C. Salt crystallization in pores: Quantification and estimation of damage. Environ. Geol. 2007, 52, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Ghobadi, M.H.; Taleb Beydokhti, A.R.; Nikudel, M.R.; Asiabanha, A.; Karakus, M. The effect of freeze–thaw process on the physical and mechanical properties of tuff. Environ. Earth Sci. 2016, 75, 846. [Google Scholar] [CrossRef]
- Iucolano, F.; Colella, A.; Liguori, B.; Calcaterra, D. Suitability of silica nanoparticles for tuff consolidation. Constr. Build. Mater. 2019, 202, 73–81. [Google Scholar] [CrossRef]
- Cappelletti, P.; Cerri, G.; Colella, A.; de’Gennaro, M.; Langella, A.; Perrotta, A.; Scarpati, C. Post-eruptive processes in the Campanian Ignimbrite. Mineral. Petrol. 2003, 79, 79–97. [Google Scholar] [CrossRef]
- Langella, A.; Bish, D.L.; Cappelletti, P.; Cerri, G.; Colella, A.; de Gennaro, R.; Graziano, S.F.; Perrotta, A.; Scarpati, C.; de Gennaro, M. New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Appl. Clay Sci. 2013, 72, 55–73. [Google Scholar] [CrossRef]
- Pinto, A.P.F.; Rodrigues, J.D. Stone consolidation: The role of treatment procedures. J. Cult. Herit. 2008, 9, 38–53. [Google Scholar] [CrossRef]
- Ferreira Pinto, A.P.; Delgado Rodrigues, J. Consolidation of carbonate stones: Influence of treatment procedures on the strengthening action of consolidants. J. Cult. Herit. 2012, 13, 154–166. [Google Scholar] [CrossRef]
- Graziani, G.; Sassoni, E.; Franzoni, E. Consolidation of porous carbonate stones by an innovative phosphate treatment: Mechanical strengthening and physical-microstructural compatibility in comparison with TEOS-based treatments. Herit. Sci. 2015, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- RILEM TC 25-PEM Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Mater. Struct. 1980, 13, 175–253.
- UNI EN 16302–2013 Conservation of Cultural Heritage—Test Methods—Measurement of Water Absorption by Pipe Method. 2013. Available online: https://standards.iteh.ai/catalog/standards/cen/530acec8-63ad-48c3-87a9-ab63853b9d2b/en-16302-2013 (accessed on 10 March 2021).
- Tzavellos, S.; Pesce, G.L.; Wu, Y.; Henry, A.; Robson, S.; Ball, R.J. Effectiveness of Nanolime as a Stone Consolidant: A 4-Year Study of Six Common UK Limestones. Materials 2019, 12, 2673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Pei, Q.; Yang, S.; Guo, Q.; Viles, H. Evaluating the Condition of Sandstone Rock-Hewn Cave-Temple Façade Using In Situ Non-invasive Techniques. Rock Mech. Rock Eng. 2020, 53, 2915–2920. [Google Scholar] [CrossRef]
- UNI EN 14579-2005 Natural Stone Test Methods—Determination of Sound Speed Propagation. 2005. Available online: https://www.en-standard.eu/une-en-14579-2005-natural-stone-test-methods-determination-of-sound-speed-propagation/ (accessed on 10 March 2021).
- Ahmad, A.; Pamplona, M.; Simon, S. Ultrasonic testing for the investigation and characterization of stone—A non-destructive and transportable tool. Stud. Conserv. 2009, 54, 43–53. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- UNI EN 15886-2010 Conservation of Cultural Property—Test Methods—Color Measurement of Surfaces. 2010. Available online: https://standards.iteh.ai/catalog/standards/cen/048ec4b9-497e-42d0-b653-a5a8d075815e/en-15886-2010 (accessed on 10 March 2021).
- EN ISO 11664-4 Colorimetry. CIE 1976 L*a*b* Color Space. 2011. Available online: https://www.iso.org/standard/74166.html (accessed on 10 March 2021).
- Mokrzycki, W.S.; Tatol, M. Colour difference δE—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Rodrigues, J.D.; Grossi, A. Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 2007, 8, 32–43. [Google Scholar] [CrossRef]
- Drdácký, M.; Lesák, J.; Rescic, S.; Slížková, Z.; Tiano, P.; Valach, J. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater. Struct. Constr. 2012, 45, 505–520. [Google Scholar] [CrossRef] [Green Version]
- La Russa, M.F.; Ruffolo, S.A.; Rovella, N.; Belfiore, C.M.; Pogliani, P.; Pelosi, C.; Andaloro, M.; Crisci, G.M. Cappadocian ignimbrite cave churches: Stone degradation and conservation strategies. Period. di Mineral. 2014, 83, 187–206. [Google Scholar] [CrossRef]
- Mora, P.; Torraca, G. Fissativi per dipinti murali. Boll. Ist. Cent. del Restauro Rome 1965, 109–132. [Google Scholar]
- UNI EN 12370—2001 Natural Stone Test Methods—Determination of Resistance to Salt Crystallisation. 2001. Available online: https://standards.iteh.ai/catalog/standards/cen/20c2211b-136d-4793-9808-e139cd9a39eb/en-12370-2020 (accessed on 10 March 2021).
- Benavente, D.; del Cura, M.A.G.; Fort, R.; Ordónez, S. Durability estimation of porous building stones from pore structure and strength. Eng. Geol. 2004, 74, 113–127. [Google Scholar] [CrossRef]
- Yavuz, A.B. Durability assessment of the Alaçatı tuff (Izmir) in western Turkey. Environ. Earth Sci. 2012, 67, 1909–1925. [Google Scholar] [CrossRef]
- Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F.J. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J. Geophys. Eng. 2013, 10, 035003. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Sert, M. Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing–thawing, and thermal shock. Bull. Eng. Geol. Environ. 2020, 79, 3751–3770. [Google Scholar] [CrossRef]
- Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García Del Cura, M.A.; Cañaveras, J.C. The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 2007, 52, 197–206. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Mees, F.; Jacobs, P.; Rodriguez-Navarro, C. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ. Geol. 2007, 52, 305–317. [Google Scholar] [CrossRef]
- Yu, S.; Oguchi, C.T. Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng. Geol. 2010, 115, 226–236. [Google Scholar] [CrossRef]
- Flatt, R.J.; Caruso, F.; Sanchez, A.M.A.; Scherer, G.W. Chemo-mechanics of salt damage in stone. Nat. Commun. 2014, 5, 4823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çelik, M.Y.; Aygün, A. The effect of salt crystallization on degradation of volcanic building stones by sodium sulfates and sodium chlorides. Bull. Eng. Geol. Environ. 2019, 78, 3509–3529. [Google Scholar] [CrossRef]
- Lubelli, B.; Cnudde, V.; Diaz-Goncalves, T.; Franzoni, E.; van Hees, R.P.J.; Ioannou, I.; Menendez, B.; Nunes, C.; Siedel, H.; Stefanidou, M.; et al. Towards a more effective and reliable salt crystallization test for porous building materials: State of the art. Mater. Struct. Constr. 2018, 51, 55. [Google Scholar] [CrossRef]
- Stück, H.; Forgó, L.Z.; Rüdrich, J.; Siegesmund, S.; Török, Á. The behaviour of consolidated volcanic tuffs: Weathering mechanisms under simulated laboratory conditions. Environ. Geol. 2008, 56, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Praticò, Y.; Caruso, F.; Delgado Rodrigues, J.; Girardet, F.; Sassoni, E.; Scherer, G.W.; Vergès-Belmin, V.; Weiss, N.R.; Wheeler, G.; Flatt, R.J. Stone consolidation: A critical discussion of theoretical insights and field practice. RILEM Tech. Lett. 2020, 4, 145–153. [Google Scholar] [CrossRef]
- Simon, S.; Lind, A.-M. Decay of limestone blocks in the block fields of Karnak Temple (Egypt): Non-destructive damage analysis and control of consolidation treatments. In Proceedings of the 12th Triennial Meeting, Lyon, France, 29 August–3 September 1999; pp. 743–749, ISBN 1-873936-92-3. [Google Scholar]
- Sebastián, E.M.; de la Torre, M.J.; Cazalla, O.; Cultrone, G.; Rodríguez-Navarro, C. Evaluation of treatments on biocalcarenites with ultrasound. In Proceedings of the 6th International Conference on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Rome, Italy, 17–20 May 1999; pp. 357–370. [Google Scholar]
- Ferreira Pinto, A.; Delgado Rodrigues, J. Impacts of consolidation procedures on colour and absorption kinetics of carbonate stones. Stud. Conserv. 2014, 59, 79–90. [Google Scholar] [CrossRef]
- Match|EasyRGB. Available online: https://www.easyrgb.com/en/match.php (accessed on 10 March 2021).
- Di Benedetto, C.; Cappelletti, P.; Favaro, M.; Graziano, S.F.; Langella, A.; Calcaterra, D.; Colella, A. Porosity as key factor in the durability of two historical building stones: Neapolitan Yellow Tuff and Vicenza Stone. Eng. Geol. 2015, 193, 310–319. [Google Scholar] [CrossRef]
Nano Estel | Lithium Silicate | |
---|---|---|
Supplier | CTS S.r.l | Prochin Italia S.r.l. |
Physical state | Liquid | Liquid |
Color | Colorless/Transparent | Colorless/Transparent |
Content of SiO2 (wt%) | 30 | 20–25 |
Specific weight (g/cm3 at 20 °C) | 1.2 | 1.19–1.21 |
Content of Li2O (wt%) | / | 2–3 |
Specific surface (m2/g) | 260 | / |
pH | 9.5-10.4 | 10.5–10.8 |
Particle size | 10–20 nm | / |
Sample Name | Stone Support | Consolidant Agent | Consolidation Procedure |
---|---|---|---|
CI/REF | Campanian Ignimbrite | / | / |
NYT/REF | Neapolitan Yellow Tuff | / | / |
CI/NE_im | Campanian Ignimbrite | Nano Estel | Immersion |
NYT/NE_im | Neapolitan Yellow Tuff | Nano Estel | Immersion |
CI/LS_im | Campanian Ignimbrite | Lithium Silicate | Immersion |
NYT/LS_im | Neapolitan Yellow Tuff | Lithium Silicate | Immersion |
CI/NE_br | Campanian Ignimbrite | Nano Estel | Brushing |
NYT/NE_br | Neapolitan Yellow Tuff | Nano Estel | Brushing |
CI/LS_br | Campanian Ignimbrite | Lithium Silicate | Brushing |
NYT/LS_br | Neapolitan Yellow Tuff | Lithium Silicate | Brushing |
Consolidant Absorption (wt %) | ||
---|---|---|
After Full Immersion for 30 min | After 10 Days Curing (20 °C, 50% HR) | |
NYT/NE_im | 36.97 ± 0.22 | 5.63 ± 0.50 |
CI/NE_im | 22.42 ± 0.21 | 3.04 ± 0.09 |
NYT/LS_im | 29.66 ± 0.28 | 5.02 ± 0.16 |
CI/LS_im | 12.75 ± 0.84 | 2.40 ± 0.14 |
Sample | Apparent Density (g/cm3) | Real Density (g/cm3) | Open Porosity (%) | Water Absorption (%) |
---|---|---|---|---|
CI/REF | 1.16 ± 0.05 | 2.30 ± 0.03 | 50.20 ± 2.29 | 38.57 ± 1.01 |
NYT/REF | 1.02 ± 0.05 | 2.40 ± 0.04 | 60.65 ± 2.07 | 53.12 ± 0.97 |
CI/NE_im | 1.20 ± 0.03 | 2.28 ± 0.04 | 47.48 ± 1.03 | 29.43 ± 0.96 |
CI/LS_im | 1.21 ± 0.04 | 2.27 ± 0.03 | 47.65 ± 1.67 | 29.31 ± 0.61 |
NYT/NE_im | 1.06 ± 0.03 | 2.37 ± 0.05 | 57.59 ± 1.69 | 48.82 ± 1.53 |
NYT/LS_im | 1.07 ± 0.03 | 2.36 ± 0.04 | 57.85 ± 1.06 | 44.23 ± 0.77 |
Total Specific Surface Area (m2/g) | Average Pore Radius (μm) | Total Porosity (%) | |
---|---|---|---|
NYT/REF | 13 | 6.8 | 49.0 |
NYT/NE_im | 27 | 5.6 | 44.2 |
NYT/LS_im | 19 | 7.1 | 45.3 |
CI/REF | 14 | 1.1 | 45.2 |
CI/NE_im | 20 | 2.0 | 41.8 |
CI/LS_im | 16 | 1.9 | 42.1 |
Sample | UPV (m/s) |
---|---|
CI/REF | 1733.00 ± 20.26 |
NYT/REF | 1666.21 ± 21.11 |
CI/NE_im | 1820.06 ± 38.88 |
CI/LS_im | 1932.24 ± 29.22 |
NYT/NE_im | 1794.22 ± 45.32 |
NYT/LS_im | 1831.91 ± 44.82 |
Samples | L* | a* | b* | ∆E |
---|---|---|---|---|
NYT/REF1 | 60.98 | 4.08 | 21.06 | 4.69 |
NYT/LS_br | 56.87 | 4.53 | 23.24 | |
NYT/REF2 | 68.03 | 2.02 | 18.26 | 6.83 |
NYT/NE_br | 62.57 | 2.33 | 22.30 | |
CI/REF1 | 67.05 | 2.65 | 17.02 | 4.98 |
CI/LS_br | 62.46 | 3.43 | 19.11 | |
CI/REF2 | 68.66 | 4.03 | 17.96 | 4.62 |
CI/NE_br | 64.85 | 4.42 | 20.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colella, A.; Capasso, I.; Iucolano, F. Comparison of Latest and Innovative Silica-Based Consolidants for Volcanic Stones. Materials 2021, 14, 2513. https://doi.org/10.3390/ma14102513
Colella A, Capasso I, Iucolano F. Comparison of Latest and Innovative Silica-Based Consolidants for Volcanic Stones. Materials. 2021; 14(10):2513. https://doi.org/10.3390/ma14102513
Chicago/Turabian StyleColella, Abner, Ilaria Capasso, and Fabio Iucolano. 2021. "Comparison of Latest and Innovative Silica-Based Consolidants for Volcanic Stones" Materials 14, no. 10: 2513. https://doi.org/10.3390/ma14102513
APA StyleColella, A., Capasso, I., & Iucolano, F. (2021). Comparison of Latest and Innovative Silica-Based Consolidants for Volcanic Stones. Materials, 14(10), 2513. https://doi.org/10.3390/ma14102513