Influence of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Soft Tissue-Dissolving and Gelatinolytic Effect of Ultrasonically Activated Sodium Hypochlorite in Simulated Endodontic Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment Groups and Power Analysis
- Physiological saline solution (0.9% NaCl), no activation vs. ultrasonic activation;
- 2.5% NaOCl, no activation vs. ultrasonic activation;
- 2.5% NaOCl containing 9% HEDP, no activation vs. ultrasonic activation.
2.2. Ultrasonic Ativation in Water Bath (Experiment 1)
2.3. Cleaning of Isthmus Areas in Epoxy Resin Models (Experiment 2)
2.4. Soft Tissue Dissolution from Simulated Resorption Cavities in Human Root Canals (Experiment 3)
2.5. Statistical Analysis
3. Results
3.1. Ultrasonic Activation in Water Bath (Experiment 1)
3.2. Cleaning of Isthmus Areas in Epoxy Resin Models (Experiment 2)
3.3. Soft Tissue Dissolution from Simulated Resorption Cavities in Human Root Canals (Experiment 3)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef]
- Vera, J.; Siqueira, J.F., Jr.; Ricucci, D.; Loghin, S.; Fernández, N.; Flores, B.; Cruz, A.G. One- versus two-visit endodontic treatment of teeth with apical periodontitis: A histobacteriologic study. J. Endod. 2012, 38, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.N.R. On the causes of persistent apical periodontitis: A review. Int. Endod. J. 2006, 39, 249–281. [Google Scholar] [CrossRef] [PubMed]
- Dutner, J.; Mines, P.; Anderson, A. Irrigation trends among American Association of Endodontists members: A web-based survey. J. Endod. 2012, 38, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Tawakoli, P.N.; Ragnarsson, K.T.; Rechenberg, D.K.; Mohn, D.; Zehnder, M. Effect of endodontic irrigants on biofilm matrix polysaccharides. Int. Endod. J. 2017, 50, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, R.W.R. Studies on the reaction between sodium hypochlorite and proteins. Biochem. J. 1947, 41, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.H.; Jiang, L.M.; Jiang, L.; Chen, X.B.; Liu, Y.Y.; Tian, F.C.; Bao, X.D.; Gao, X.J.; Versluis, M.; Wu, M.K.; et al. Radiographic healing after a root canal treatment performed in single-rooted teeth with and without ultrasonic activation of the irrigant: A randomized controlled trial. J. Endod. 2013, 39, 1218–1225. [Google Scholar] [CrossRef]
- Walsh, L.J.; George, R. Activation of alkaline irrigation fluids in endodontics. Materials 2017, 10, 1214. [Google Scholar] [CrossRef] [Green Version]
- Haapasalo, M.; Shen, Y.; Qian, W.; Gao, Y. Irrigation in Endodontics. Dent. Clin. N. Am. 2010, 54291–54312. [Google Scholar] [CrossRef]
- De-Deus, G.; Reis, C.; Paciornik, S. Critical appraisal of published smear layer-removal studies: Methodological issues. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 531–543. [Google Scholar] [CrossRef]
- Paqué, F.; Boessler, C.; Zehnder, M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int. Endod. J. 2011, 44, 148–153. [Google Scholar] [CrossRef]
- Zollinger, A.; Mohn, D.; Zeltner, M.; Zehnder, M. Short-term storage stability of NaOCl solutions when combined with Dual Rinse HEDP. Int. Endod. J. 2018, 51, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giardino, L.; Del Fabbro, M.; Morra, M.; Pereira, T.; Bombarda de Andrade, F.; Savadori, P.; Generali, L. Dual Rinse HEDP increases the surface tension of NaOCl but may increase its dentin disinfection efficacy. Odontology 2019, 107, 521–529. [Google Scholar] [CrossRef]
- Kfir, A.; Goldenberg, C.; Metzger, Z.; Hülsmann, M.; Baxter, S. Cleanliness and erosion of root canal walls after irrigation with a new HEDP-based solution vs. traditional sodium hypochlorite followed by EDTA. A scanning electron microscopy study. Clin. Oral Investig. 2020, 24, 3699–3706. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.P.; Yiu, C.K.Y.; Matinlinna, J.P.; Kishen, A.; Neelakantan, P. The effects of sequential and continuous chelation on dentin. Dent. Mater. 2020, 36, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.P.; Kahler, B.; Walsh, L.J. The Effect of heating to intracanal temperature on the stability of sodium hypochlorite admixed with etidronate or EDTA for continuous chelation. J. Endod. 2019, 45, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Biel, P.; Mohn, D.; Attin, T.; Zehnder, M. Interactions between the tetrasodium salts of EDTA and 1-hydroxyethane 1,1-diphosphonic acid with sodium hypochlorite irrigants. J. Endod. 2017, 43, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Ballal, N.V.; Gandhi, P.; Shenoy, P.A.; Shenoy Belle, V.; Bhat, V.; Rechenberg, D.K.; Zehnder, M. Safety assessment of an etidronate in a sodium hypochlorite solution: Randomized double-blind trial. Int. Endod. J. 2015, 48, 602–610. [Google Scholar] [CrossRef]
- Neelakantan, P.; Cheng, C.Q.; Mohanraj, R.; Sriraman, P.; Subbarao, C.; Sharma, S. Antibiofilm activity of three irrigation protocols activated by ultrasonic, diode laser or Er:YAG laser in vitro. Int. Endod. J. 2019, 52, 1274–1282. [Google Scholar] [CrossRef]
- Álvarez-Sagües, A.; Herce, N.; Amador, U.; Llinares-Pinel, F.; Nistal-Villan, E.; Presa, J.; Álvarez, L.; Azabal, M. Efficacy of EDTA and HEDP chelators in the removal of mature biofilm of enterococcus faecalis by PUI and XPF file activation. Dent. J. 2021, 9, 41. [Google Scholar] [CrossRef]
- Zeltner, M.; Peters, O.A.; Paqué, F. Temperature changes during ultrasonic irrigation with different inserts and modes of activation. J. Endod. 2009, 35, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Vinatoru, M.; Mason, T.J. Jean-Louis Luche and the interpretation of sonochemical reaction mechanisms. Molecules 2021, 26, 755. [Google Scholar] [CrossRef] [PubMed]
- Tiong, T.J.; Price, G.J. Ultrasound promoted reaction of Rhodamin B with sodium hypochlorite using sonochemical and dental ultrasonic instruments. Ultrason. Sonochem. 2012, 19, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Naenni, N.; Kaya, T.; Zehnder, M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J. Endod. 2004, 30, 785–787. [Google Scholar] [CrossRef]
- Robinson, J.P.; Macedo, R.G.; Verhaagen, B.; Versluis, M.; Cooper, P.R.; van der Sluis, L.W.M.; Walmsley, A.D. Cleaning lateral morphological features of the root canal: The role of streaming and cavitation. Int. Endod. J. 2018, 51, e55–e64. [Google Scholar] [CrossRef]
- Al-Jadaa, A.; Paqué, F.; Attin, T.; Zehnder, M. Necrotic pulp tissue dissolution by passive ultrasonic irrigation in simulated accessory canals: Impact of canal location and angulation. Int. Endod. J. 2009, 42, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Macedo, R.G.; Robinson, J.P.; Verhaagen, B.; Walmsley, A.D.; Versluis, M.; Cooper, P.R.; van der Sluis, L.W.M. A novel methodology providing insights into removal of biofilm-mimicking hydrogel from lateral morphological features of the root canal during irrigation procedures. Int. Endod. J. 2014, 47, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, L.W.M.; Versluis, M.; Wu, M.K.; Wesselink, P.R. Passive ultrasonic irrigation of the root canal: A review of the literature. Int. Endod. J. 2007, 40, 415–426. [Google Scholar] [CrossRef]
- Gencoglu, N.; Yildirim, T.; Garip, Y.; Karagenc, B.; Yilmaz, H. Effectiveness of different gutta-percha techniques when filling experimental internal resorptive cavities. Int. Endod. J. 2008, 41, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J.; Lorimer, J.P.; Bates, D.M. Quantifying sonochemistry: Casting some light on a ‘black art’. Ultrasonics 1992, 30, 40–42. [Google Scholar] [CrossRef]
- Macedo, R.G.; Verhaagen, B.; Fernandez Rivas, D.; Gardeniers, J.G.E.; van der Sluis, L.W.M.; Wesselink, P.R.; Versluis, M. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models. Ultrason. Sonochem. 2014, 21, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Rechenberg, D.K.; Ragnarsson, K.T.; Rüeger, S.; Held, L.; Mohn, D.; Zehnder, M. A new method to assess available chlorine in small volumes of liquid. J. Endod. 2014, 40, 534–537. [Google Scholar] [CrossRef]
- Harlamb, S.C.; Messer, H.H. The identification of proteoglycan-associated mRNAs in human dental pulp cells. Arch. Oral Biol. 1996, 41, 1097–1100. [Google Scholar] [CrossRef]
- Yamada, S.; Sugahara, K.; Özbek, S. Evolution of glycosaminoglycans: Comparative biochemical study. Commun. Integr. Biol. 2011, 4, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Verhaagen, B.; Lea, S.C.; de Bruin, G.J.; van der Sluis, L.W.M.; Walmsley, A.D.; Versluis, M. Oscillation characteristics of endodontic files: Numerical model and its validation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2448–2459. [Google Scholar] [CrossRef]
- Nagendababu, V.; Jayaraman, J.; Suresh, A.; Kalyanasundaram, S.; Neelakantan, P. Effectiveness of ultrasonically activated irrigation on root canal disinfection: A systematic review of in vitro studies. Clin. Oral Investig. 2018, 22, 655–670. [Google Scholar] [CrossRef]
Irrigant | Ultrasonic Activation (30 s) | Temperature (°C) 1 | NaOCl wt% 1 |
---|---|---|---|
2.5% NaOCl & water 2 | No | 28.5 ± 0.1 | 2.3 ± 0.0 |
2.5% NaOCl & 9% HEDP | No | 28.7 ± 0.3 | 2.3 ± 0.0 |
2.5% NaOCl & 9% HEDP | Yes | 30.1 ± 0.2 | 2.3 ± 0.0 |
Irrigant | Ultrasonic Activation (30 s) | Weight Loss (%) 1 | Statistics 1 |
---|---|---|---|
Saline | No | 0.6 ± 0.2 | A |
Yes | 3.1 ± 0.2 | A | |
2.5% NaOCl | No | 8.5 ± 0.3 | B |
Yes | 19.6 ± 5.7 | C | |
2.5% NaOCl & 9% HEDP | No | 9.9 ± 1.1 | B |
Yes | 17.8 ± 6.9 | C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballal, N.V.; Ivica, A.; Meneses, P.; Narkedamalli, R.K.; Attin, T.; Zehnder, M. Influence of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Soft Tissue-Dissolving and Gelatinolytic Effect of Ultrasonically Activated Sodium Hypochlorite in Simulated Endodontic Environments. Materials 2021, 14, 2531. https://doi.org/10.3390/ma14102531
Ballal NV, Ivica A, Meneses P, Narkedamalli RK, Attin T, Zehnder M. Influence of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Soft Tissue-Dissolving and Gelatinolytic Effect of Ultrasonically Activated Sodium Hypochlorite in Simulated Endodontic Environments. Materials. 2021; 14(10):2531. https://doi.org/10.3390/ma14102531
Chicago/Turabian StyleBallal, Nidambur Vasudev, Anja Ivica, Pamela Meneses, Raj Kumar Narkedamalli, Thomas Attin, and Matthias Zehnder. 2021. "Influence of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Soft Tissue-Dissolving and Gelatinolytic Effect of Ultrasonically Activated Sodium Hypochlorite in Simulated Endodontic Environments" Materials 14, no. 10: 2531. https://doi.org/10.3390/ma14102531
APA StyleBallal, N. V., Ivica, A., Meneses, P., Narkedamalli, R. K., Attin, T., & Zehnder, M. (2021). Influence of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Soft Tissue-Dissolving and Gelatinolytic Effect of Ultrasonically Activated Sodium Hypochlorite in Simulated Endodontic Environments. Materials, 14(10), 2531. https://doi.org/10.3390/ma14102531