Determining Adsorption Parameters of Potentially Contaminant-Releasing Materials Using Batch Tests with Differing Liquid-Solid Ratios
Abstract
:1. Introduction
2. Theory
2.1. Advection-dispersion Model
2.2. Adsorption Isotherms of PCMs
2.3. Application of LS-Parallel Test on PCMs
3. Material and Methods
3.1. Material
3.2. LS-Parallel Test
3.3. Column Percolation Test
3.4. Measurement
4. Results and Discussion
4.1. Changes in pH with Time during the LS-Parallel Test
4.2. Approximation of Adsorption Parameters from LS-Parallel Test
4.3. Effect of Colloids Passing the Filter
4.4. Reproductivity of Column Percolation Test by LS-Parallel Test
4.5. Further Applications of LS-Parallel Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO 21268–1:2019(E). Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil Materials—Part 1: Batch Test Using a Liquid to Solid Ratio of 2 L/kg Dry Matter; International Standardization Organization: Geneva, Switzreland, 2019. [Google Scholar]
- ISO 21268–2:2019(E). Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 L/kg Dry Matter; International Standardization Organization: Geneva, Switzreland, 2019. [Google Scholar]
- ISO 21268–3:2019(E). Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil Materials—Part 3: Up-Flow Percolation Test; International Standardization Organization: Geneva, Switzreland, 2019. [Google Scholar]
- Kalbe, U.; Berger, W.; Eckardt, E.; Simon, F. Evaluation of leaching and extraction procedures for soil and waste. Waste Manag. 2008, 28, 1027–1038. [Google Scholar] [CrossRef]
- Maszkowska, J.; Kołodziejska, M.; Białk-Bielińska, A.; Mrozik, W.; Kumirska, J.; Stepnowski, P.; Palavinskas, R.; Krüger, O.; Kalbe, U. Column and batch tests of sulfonamide leaching from different types of soil. J. Hazard. Mater. 2013, 260, 468–474. [Google Scholar] [CrossRef]
- Meza, S.; Garrabants, A.; van der Sloot, H.; Kosson, D. Comparison of the release of constituents from granular materials under batch and column testing. Waste Manag. 2008, 28, 1853–1867. [Google Scholar] [CrossRef]
- Quina, M.; Bordado, J.; Quinta-Ferreira, Q. Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues. Waste Manag. 2011, 31, 236–245. [Google Scholar] [CrossRef]
- Schuwirth, N.; Hofmann, T. Comparability of and alternatives to leaching tests for the assessment of the emission of inorganic soil contamination. J. Soils Sediments 2006, 6, 102–112. [Google Scholar] [CrossRef]
- Guyonnet, D.; Bodénan, F.; Brons-Laot, G.; Burnol, A.; Chateau, L.; Crest, M.; Méhu, J.; Moszkowicz, P.; Piantone, P. Multiple-scale dynamic leaching of municipal solid waste incineration ash. Waste Manag. 2008, 28, 1963–1976. [Google Scholar] [CrossRef] [Green Version]
- Hjelmar, O.; van der Sloot, H.; Guyonnet, D.; Rietra, R.; Brun, A. Development of acceptance criteria for landfilling of waste: An approach based on impact modelling and scenario calculations. In Sardinia 2001, Proceedings of the Eigth International Waste Management and Landfill Symposium, S. Margharita di Pula, Cagliari; Christensen, T., Cossu, R., Stegmann, R., Eds.; CISA: Padova, Italy, 2001; Volume 3, pp. 711–721. [Google Scholar]
- Lee, H.; Yu, G.; Choi, Y.; Jho, E.H.; Nam, K. Long-term leaching prediction of constituents in coal bottom ash used as a structural fill material. J. Soils Sediments 2017, 17, 2742–2751. [Google Scholar] [CrossRef]
- Verginelli, I.; Baciocchi, R. Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework. J. Environ. Manag. 2013, 114, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Tiruta-Barna, L.; Barna, R.; Moszkowicz, P.; Hae-Ryong, B. Distributed mass transfer rate for modelling the leaching of porous granular materials containing soluble pollutants. Chem. Eng. Sci. 2000, 55, 1257–1267. [Google Scholar]
- Kim, K.; Yang, W.; Nam, K.; Choe, J.K.; Cheong, J.; Choi, Y. Prediction of long-term heavy metal leaching from dredged marine sediment applied inland as a construction material. Environ. Sci. Pollut. Res. 2018, 25, 27352–27361. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculation. U.S. Geol. Surv. Water Resour. Investig. 1999, 312. [Google Scholar] [CrossRef] [Green Version]
- Astrup, T.; Rosenblad, C.; Trapp, S.; Christensen, T.H. Chromium release from waste incineration air-pollution-control residues. Environ. Sci. Technol. 2005, 39, 3321–3329. [Google Scholar] [CrossRef] [PubMed]
- Grathowhl, P.; Susset, B. Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manag. 2009, 29, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Ogata, A.; Banks, R.G. A solution of the Differential Equation of Longitudinal Dispersion in Porous Media; US Government Printing Office: Washington, DC, USA, 1961.
- OECD Guideline for the Testing of Chemicals. Adsorption—Desorption Using a Batch Equilibrium Method. In Adsorption—Desorption Using a Batch Equilibrium Method; The Organisation for Economic Co-operation and Development: Paris, France, 2000. [Google Scholar]
- Miller, C.; Weber, W. Sorption of Hydrophobic Organic Pollutants in Saturated Soil System. J. Contam. Hydrol. 1986, 1, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Fetter, C.; Boving, T.; Kreamer, D. Contaminant Hydrology, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2017; ISBN 978-1478632795. [Google Scholar]
- US EPA. Method 1316, Liquid-Solid Partitioning as a Function of Liquid-T-Solid Ratio in Solid Materials Using a Parallel Batch Procedure, Revision 2017; United States Environmental Protection Agency: Washington, DC, USA, 2017.
- MOEJ. Soil Environmental Standard; Ministry of the Environment: Tokyo, Japan, 1991.
- Grathwohl, P. On equilibration of pore water in column leaching tests. Waste Manag. 2014, 34, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Finkel, M.; Grathwohl, P. Impact of pre-equilibrium and diffusion limited release kinetics on effluent concentration in column leaching tests: Insights from numerical simulations. Waste Manag. 2017, 63, 58–73. [Google Scholar] [CrossRef]
- Sakanakura, H. Diffusion test of 20 kinds of waste molten slags and competitive Materials. J. Mater. Cycle Waste Manag. 2005, 7, 71–77. [Google Scholar] [CrossRef]
- Sakanakura, H.; Tanaka, N. Leaching mechanisms of waste molten slag in batch type experiments. J. Jpn. Soc. Waste Manag. Experts 1998, 9, 11–19. (In Japanese) [Google Scholar] [CrossRef]
- Imoto, Y.; Yasutaka, T.; Someya, M.; Higashino, K. Influence of solid-liquid separation method parameters employed in soil leaching tests on apparent metal concentration. Sci. Total Environ. 2018, 624, 96–105. [Google Scholar] [CrossRef]
- Someya, M.; Higashino, K.; Imoto, Y.; Sakanakura, H.; Yasutaka, T. Effects of membrane filter material and pore size on turbidity and hazardous element concentrations in soil batch leaching tests. Chemosphere 2021, 265, 128981. [Google Scholar] [CrossRef]
- Yasutaka, T.; Imoto, Y.; Kurosawa, A.; Someya, M.; Higashino, K.; Kalbe, U.; Sakanakura, H. Effects of colloidal particles on the results and reproducibility of batch leaching tests for heavy metal-contaminated soil. Soils Found. 2017, 57, 861–871. [Google Scholar] [CrossRef]
- Guyonnet, D. Discussion—Comparison of percolation test to batch and sequential leaching tests: Theory and data. Waste Manag. 2010, 30, 1746–1747. [Google Scholar] [CrossRef]
Content | Method | Content (mg/kg) | Method | ||||||
---|---|---|---|---|---|---|---|---|---|
(% for Si-P, mg/kg for S-Sr) | |||||||||
Si | 24.1 | XRF | Zn | 98.7 | ± | 2.9 | AD + AF | ||
Al | 7.20 | ± | 0.26 | AD + AF | Rb | 66.0 | ± | 1.6 | AD + AF |
Fe | 3.72 | ± | 0.09 | AD + AF | Cr | 52.9 | ± | 8.6 | AD + AF |
K | 3.19 | ± | 0.18 | AD + AF | Cu | 25.6 | ± | 0.5 | AD + AF |
Na | 2.25 | ± | 0.19 | AD + AF | Ni | 18.3 | ± | 0.6 | AD + AF |
Ca | 2.12 | ± | 0.12 | AD + AF | Pb | 16.5 | ± | 0.2 | AD + AF |
Mg | 1.02 | ± | 0.020 | AD + AF | Se | 14.8 | ± | 0.5 | AD + AF |
Ti | 0.331 | ± | 0.023 | AD + AF | As | 12.7 | ± | 1.3 | AD + AF |
P | 0.120 | XRF | Co | 12.5 | ± | 0.3 | AD + AF | ||
S | 884 | XRF | Cs | 3.15 | ± | 0.48 | AD + AF | ||
Mn | 762 | ± | 32 | AD + AF | Mo | 0.96 | ± | 0.03 | AD + AF |
Cl | 540 | XRF | Sb | 0.35 | ± | 0.01 | AD + AF | ||
Ba | 525 | ± | 13 | AD + AF | Cd | 0.20 | ± | 0.00 | AD + AF |
Sr | 313 | ± | 18 | AD + AF |
Liquid-Solid Ratio (L/kg) | Sample Amount (g) | Solution Volume (mL) | Vessel Volume (mL) | Replicates | Contact Time | |
---|---|---|---|---|---|---|
LS 1 | 1 | 60 | 60 | 250 | 2 | 10 min, 6 h, 1 d, 7 d, 28 d |
LS 3 | 3 | 20 | 60 | 250 | 2 | 10 min, 6 h, 1 d, 7 d, 28 d |
LS 10 | 10 | 10 | 100 | 250 | 2 | 10 min, 6 h, 1 d, 7 d, 28 d |
LS 30 | 30 | 5 | 150 | 250 | 2 | 10 min, 6 h, 1 d, 7 d, 28 d |
LS 100 | 100 | 5 | 500 | 1000 | 3 | 10 min, 6 h, 1 d, 7 d, 28 d |
LS 300 | 300 | 2.5 | 750 | 1000 | 3 | 10 min, 6 h, 1 d, 7 d, 28 d |
Duration Time in LS-Parallel Test | Referred LS Range | Referred Concentration Range | MT | Henry | Langmuir | Coefficient of Determination R2 | ||
---|---|---|---|---|---|---|---|---|
Kd | Msat | KL | ||||||
(L/kg) | (mg/L) | (mg/kg) | (L/kg) | (mg/kg) | (L/mg) | |||
SO42− | 6 h | 1–10 | 50–600 | 530 | 0.06 | - | - | 0.604 |
1 d | 1–10 | 60–500 | 580 | 0.15 | - | - | 0.884 | |
7 d | 1–300 | 2–500 | 570 | 0.03 | - | - | 0.153 | |
28 d | 1–300 | 2–600 | 570 | 0.01 | - | - | 0.001 | |
Na | 10 min | 3–300 | 0.6–50 | 190 | 0.96 | - | - | 0.988 |
6 h | 1–10 | 20–150 | 210 | 0.42 | - | - | 0.999 | |
1 d | 1–10 | 20–140 | 210 | 0.47 | - | - | 1.000 | |
7 d | 1–10 | 20–160 | 210 | 0.34 | - | - | 1.000 | |
28 d | 1–10 | 25–170 | 260 | 0.49 | - | - | 1.000 | |
B | 6 h | 1–3 | 0.08–0.1 | 0.36 | 1.7 | - | - | - |
1 d | 1–3 | 0.1–0.2 | 0.51 | 1.8 | - | - | - | |
7 d | 1–10 | 0.06–0.2 | 0.72 | 2.0 | - | - | 0.971 | |
28 d | 1–10 | 0.06–0.3 | 0.72 | 1.8 | - | - | 0.993 | |
Mg | 10 min | 3–300 | 0.4–8.0 | 120 | - | 140 | 0.34 | 0.996 |
6 h | 1–100 | 1.1–25 | 170 | - | 160 | 0.65 | 0.994 | |
1 d | 1–100 | 1.2–25 | 170 | - | 160 | 0.50 | 0.999 | |
7 d | 1–100 | 1.3–33 | 170 | - | 150 | 0.37 | 0.995 | |
28 d | 1–100 | 1.4–41 | 160 | - | 140 | 0.18 | 0.999 | |
F− | 10 min | 10–100 | 0.07–0.5 | 7.9 | 6.9 | - | - | 0.999 |
6 h | 30–100 | 0.1–0.4 | 16 | 14 | - | - | - | |
1 d | 30–100 | 0.2–0.4 | 18 | 14 | - | - | - | |
7 d | 30–300 | 0.07–0.4 | 23 | 21 | - | - | 0.947 | |
As | 10 min | 1–300 | 0.0001–0.003 | 0.043 | 13 | - | - | 0.961 |
6 h | 1–300 | 0.0006–0.006 | 0.25 | - | 0.3 | 480 | 0.995 | |
1 d | 30–300 | 0.0009–0.003 | 0.47 | - | 0.7 | 520 | 0.997 | |
7 d | 30–300 | 0.001–0.003 | 1.3 | - | 1.6 | 980 | 0.932 | |
28 d | 100–300 | 0.001–0.002 | 2.9 | - | 3.6 | 1500 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakanakura, H.; Ito, K.; Tang, J.; Nakagawa, M.; Ishimori, H. Determining Adsorption Parameters of Potentially Contaminant-Releasing Materials Using Batch Tests with Differing Liquid-Solid Ratios. Materials 2021, 14, 2534. https://doi.org/10.3390/ma14102534
Sakanakura H, Ito K, Tang J, Nakagawa M, Ishimori H. Determining Adsorption Parameters of Potentially Contaminant-Releasing Materials Using Batch Tests with Differing Liquid-Solid Ratios. Materials. 2021; 14(10):2534. https://doi.org/10.3390/ma14102534
Chicago/Turabian StyleSakanakura, Hirofumi, Kenichi Ito, Jiajie Tang, Mikako Nakagawa, and Hiroyuki Ishimori. 2021. "Determining Adsorption Parameters of Potentially Contaminant-Releasing Materials Using Batch Tests with Differing Liquid-Solid Ratios" Materials 14, no. 10: 2534. https://doi.org/10.3390/ma14102534
APA StyleSakanakura, H., Ito, K., Tang, J., Nakagawa, M., & Ishimori, H. (2021). Determining Adsorption Parameters of Potentially Contaminant-Releasing Materials Using Batch Tests with Differing Liquid-Solid Ratios. Materials, 14(10), 2534. https://doi.org/10.3390/ma14102534