Application of Selective Induction Heating for Improvement of Mechanical Properties of Elastic Hinges
Abstract
:1. Introduction
2. Investigated Geometry
3. Experimental Setup
3.1. Selective Induction Heating Simulations
3.2. Thermal Measurements
3.3. Injection Molding Simulations
3.4. Mechanical Tests
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Białasz, S.; Klepka, T. Simulation of the medical syringe injection moulding process. MATEC Web Conf. 2019, 252. [Google Scholar] [CrossRef]
- Fiorio, R.; Villanueva Díez, S.; Sánchez, A.; D’hooge, D.R.; Cardon, L. Influence of Different Stabilization Systems and Multiple Ultraviolet A (UVA) Aging/Recycling Steps on Physicochemical, Mechanical, Colorimetric, and Thermal-Oxidative Properties of ABS. Materials 2020, 13, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalwik, A.; Postawa, P.; Nabiałek, M. Analysis of Ageing Processes of Semi-Crystalline Materials. Mater. Plast. 2020, 57, 41–51. [Google Scholar] [CrossRef]
- Sykutera, D.; Czyżewski, P.; Kościuszko, A.; Szewczykowski, P.; Wajer, Ł.; Bieliński, M. Monitoring of the injection and holding phases by using a modular injection mold. J. Polym. Eng. 2018, 38, 63–71. [Google Scholar] [CrossRef]
- Mohd Hanid, M.H.; Abd Rahim, S.Z.; Gondro, J.; Sharif, S.; Al Bakri Abdullah, M.M.; Zain, A.M.; El-hadj Abdellah, A.; Mat Saad, M.N.; Wysłocki, J.J.; Nabiałek, M. Warpage Optimisation on the Moulded Part with Straight Drilled and Conformal Cooling Channels Using Response Surface Methodology (RSM), Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) Optimisation Approaches. Materials 2021, 14, 1326. [Google Scholar] [CrossRef]
- Torres-Alba, A.; Mercado-Colmenero, J.M.; Diaz-Perete, D.; Martin-Doñate, C.A. New Conformal Cooling Design Procedure for Injection Molding Based on Temperature Clusters and Multidimensional Discrete Models. Polymers 2020, 12, 154. [Google Scholar] [CrossRef] [Green Version]
- Finkeldey, F.; Volke, J.; Zarges, J.; Heim, H.; Wiederkehr, P. Learning quality characteristics for plastic injection molding processes using a combination of simulated and measured data. J. Manuf. Process. 2020, 60, 134–143. [Google Scholar] [CrossRef]
- Bartkowiak, T.; Mendak, M.; Mrozek, K.; Wieczorowski, M. Analysis of Surface Microgeometry Created by Electric Discharge Machining. Materials 2020, 13, 3830. [Google Scholar] [CrossRef]
- Wang, J.; Hopmann, C.; Kahve, C.; Hohlweck, T.; Alms, J. Measurement of specific volume of polymers under simulated injection molding processes. Mater. Des. 2020, 196, 109136. [Google Scholar] [CrossRef]
- Berger, G.R.; Gruber, D.P.; Friesenbichler, W.; Teichert, C.; Burgsteiner, M. Replication of stochastic and geometric micro structures: Aspects of visual appearance. Int. Polym. Process. 2011, 26, 313–322. [Google Scholar] [CrossRef]
- Poszwa, P.; Muszyński, P.; Mrozek, K. Numerical study on the influence of RHCM on the basic parameters of filling the cavity. CIRP J. Manuf. Sci. Technol. 2020, 30, 94–104. [Google Scholar] [CrossRef]
- Mrozek, K.; Chen, S.C. Selective induction heating to eliminate the fundamental defects of thin-walled moldings used in electrical industry. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Mrozek, K.; Poszwa, P.; Muszyński, P. Numerical study on the influence of Rapid Temperature Cycling (RTC) on polymer flow at maximum injection pressure. Numer. Heat Transf. Part A Appl. 2020, 77, 821–839. [Google Scholar] [CrossRef]
- Kria, F.; Hammami, M.; Baccar, M. Conformal heating/cooling channels design in rapid heat cycle molding process. Mech. Ind. 2017, 18. [Google Scholar] [CrossRef]
- Xiao, C.L.; Huang, H.X. Optimal design of heating system in rapid thermal cycling blow mold by a two-step method based on sequential quadratic programming. Int. Commun. Heat. Mass. Transf. 2018, 96, 114–121. [Google Scholar] [CrossRef]
- Chen, S.C.; Lin, Y.W.; Chien, R.D.; Li, H.M. Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. Adv. Polym. Technol. 2008, 27, 224–232. [Google Scholar] [CrossRef]
- Chen, S.C.; Minh, P.S.; Chang, J.A.; Huang, S.W.; Huang, C.H. Mold temperature control using high-frequency proximity effect induced heating. Int. Commun. Heat. Mass. Transf. 2011, 39, 216–223. [Google Scholar] [CrossRef]
- Shih, S.Y.; Nian, S.C.; Huang, M.S. Comparison between single- and multiple-zone induction heating of largely curved mold surfaces. Int. Commun. Heat. Mass. Transf. 2016, 75, 24–35. [Google Scholar] [CrossRef]
- Mrozek, K. Simulation study of induction heating of multi-metallic injection moulds. Int. J. Simul. Model. 2018, 17, 220–230. [Google Scholar] [CrossRef]
- Nian, S.C.; Huang, M.S.; Tsai, T.H. Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method. Int. Commun. Heat. Mass. Transf. 2014, 50, 52–60. [Google Scholar] [CrossRef]
- Menotti, S.; Bissacco, G.; Hansen, H.; Tang, P.; Ravn, C. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding. Int. J. Autom. Technol. 2015, 9, 349–355. [Google Scholar] [CrossRef]
- Lee, H.; Jang, N.; Park, K. High-frequency induction heating for increase of flow length in polymer/metal hybrid molding. J. Mech. Sci. Technol. 2019, 33, 5375–5382. [Google Scholar] [CrossRef]
- Mrozek, K.; Muszyński, P.; Poszwa, P. Influence of induction heating of injection molds on reliability of electrical connectors. Eksploat. i Niezawodn. 2020, 22, 676–683. [Google Scholar] [CrossRef]
- Giang, N.T.; Minh, P.S.; Son, T.A.; Uyen, T.M.T.; Nguyen, T.-H.; Dang, H.-S. Study on External Gas-Assisted Mold Temperature Control with the Assistance of a Flow Focusing Device in the Injection Molding Process. Materials 2021, 14, 965. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.W.; Peng, H.S.; Choong, W.H. Mold-Face Heating Mechanism, Overflow-Well Design, and Their Effect on Surface Weldline and Tensile Strength of Long-Glass-Fiber-Reinforced Polypropylene Injection Molding. Polymers 2020, 12, 2474. [Google Scholar] [CrossRef]
- Kościuszko, A.; Marciniak, D.; Sykutera, D. Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials 2021, 14, 22. [Google Scholar] [CrossRef]
- Bociąga, E.; Kaptacz, S.; Duda, P.; Rudawska, A. The influence of the type of polypropylene and the length of the flow path on the structure and properties of injection molded parts with the weld lines. Polym. Eng. Sci. 2019, 59, 1710–1718. [Google Scholar] [CrossRef]
- Bula, K.; Sterzyński, T.; Piasecka, M.; Różański, L. Deformation Mechanism in Mechanically Coupled Polymer–Metal Hybrid Joints. Materials 2020, 13, 2512. [Google Scholar] [CrossRef]
- Postawa, P.; Stachowiak, T. Mould temperature control during injection moulding process. AIP Conf. Proc. 2015, 1664, 110012. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Ji, K.; Zhang, J.; Chen, Y.; Dong, Z.; Zheng, J.; Fu, J. In-situ ultrasonic measurement of molten polymers during injection molding. J. Mater. Process. Technol. 2021, 293, 117081. [Google Scholar] [CrossRef]
- Yottha, S.; Turng, L.S. Microcellular injection molding of recycled poly(ethylene terephthalate) blends with chain extenders and nanoclay. J. Polym. Eng. 2014, 34, 5–13. [Google Scholar] [CrossRef]
- Feng, J.; Yang, W.; Zhang, R.Y.; Wu, J.J.; Wang, L.; Zhang, C.L.; Yang, M.B. Effect of viscosity ratio on the crystalline morphologies and mechanical property of multi-melt multi-injection molded parts. Polym. Plast. Technol. Eng. 2014, 53, 1272–1282. [Google Scholar] [CrossRef]
- Sánchez, R.; Martinez, A.; Mercado, D.; Carbonel, A.; Aisa, J. Rapid heating injection moulding: An experimental surface temperature study. Polym. Test. 2021, 93, 106928. [Google Scholar] [CrossRef]
- Zamani, N.; Kaufmann, R.; Kosinski, P.; Skauge, A. Mechanisms of non-newtonian polymer flow through porous media using navier–stokes approach. J. Dispers. Sci. Technol. 2015, 36, 310–325. [Google Scholar] [CrossRef]
- Liparoti, S.; Sorrentino, A.; Titomanlio, G. Temperature and pressure evolution in fast heat cycle injection molding. Mater. Manuf. Process. 2019, 34, 422–430. [Google Scholar] [CrossRef]
- Pedro, J.; Ramôa, B.; Nóbrega, J.M.; Fernandes, C. Verification and Validation of openInjMoldSim, an Open-Source Solver to Model the Filling Stage of Thermoplastic Injection Molding. Fluids 2020, 5, 84. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445. [Google Scholar]
- Reback, J.; McKinney, W.; Van den Bossche, J.; Augspurger, T.; Cloud, P. H-Vetinari. 12 April 2021. Pandas-Dev/Pandas: Pandas 1.2.4 (Version v1.2.4). Zenodo. Available online: https://zenodo.org/record/4681666 (accessed on 12 April 2021). [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pauli, V.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar]
Property | Steel 1.2343 |
---|---|
Relative magnetic permeability μr | 55 |
1e8 | |
Thermal conductivity K [] | 45 |
] | 7.8 |
] | 460 |
Property | Farther Hinge | Closer Hinge | Technical Datasheet |
---|---|---|---|
3600 | |||
85 | |||
10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muszyński, P.; Poszwa, P.; Gessner, A.; Mrozek, K. Application of Selective Induction Heating for Improvement of Mechanical Properties of Elastic Hinges. Materials 2021, 14, 2543. https://doi.org/10.3390/ma14102543
Muszyński P, Poszwa P, Gessner A, Mrozek K. Application of Selective Induction Heating for Improvement of Mechanical Properties of Elastic Hinges. Materials. 2021; 14(10):2543. https://doi.org/10.3390/ma14102543
Chicago/Turabian StyleMuszyński, Paweł, Przemysław Poszwa, Andrzej Gessner, and Krzysztof Mrozek. 2021. "Application of Selective Induction Heating for Improvement of Mechanical Properties of Elastic Hinges" Materials 14, no. 10: 2543. https://doi.org/10.3390/ma14102543
APA StyleMuszyński, P., Poszwa, P., Gessner, A., & Mrozek, K. (2021). Application of Selective Induction Heating for Improvement of Mechanical Properties of Elastic Hinges. Materials, 14(10), 2543. https://doi.org/10.3390/ma14102543