Thermal and Thermo-Mechanical Properties of Poly(L-lactic Acid) Biocomposites Containing β-Cyclodextrin/d-Limonene Inclusion Complex
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Di Lorenzo, M.L.; Androsch, R. Synthesis, Structure and Properties of Poly(Lactic Acid); Advances in Polymer Science; Springer: Berlin, Germany, 2018; Volume 279. [Google Scholar]
- Di Lorenzo, M.L.; Androsch, R. Industrial Applications of Poly(Lactic Acid); Advances in Polymer Science; Springer: Berlin, Germany, 2018; Volume 282. [Google Scholar]
- Malinconico, M.; Vink, E.T.H.; Cain, A. Applications of Poly(lactic acid) in Commodities and Specialties. In Industrial Applications of Poly(Lactic Acid); Advances in Polymer Science; Springer: Berlin, Germany, 2018; Volume 282. [Google Scholar]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidelines on submission of a dossier for safety evaluation by the EFSA of active or intelligent substances present in active and intelligent materials and articles intended to come into contact with food. EFSA J. 2009, 7, 1208. [Google Scholar]
- Moeini, A.; Reenen, A.; Otterlo, W.; Cimmino, A.; Masi, M.; Lavermicocca, P.; Valerio, F.; Immirzi, B.; Santagata, G.; Malinconico, M.; et al. α-costic acid, a plant sesquiterpenoid from Dittrichiaviscosa, as modifier of Poly(lactic acid) properties: A novel exploitation of the autochthone biomass metabolite for a wholly biodegradable system. Ind. Crops. Prod. 2020, 146, 112134. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food. Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Khaneghah, A.M.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers 2019, 11, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falleh, H.; Jemaa, M.B.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Arrieta, M.P.; López, J.; Ferrándiz, S.; Peltzer, M.A. Characterization of PLA-limonene blends for food packaging applications. Polym. Test. 2013, 32, 760–768. [Google Scholar] [CrossRef]
- Sawalha, H.; Schroën, K.; Boom, R. Addition of oils to polylactide casting solutions as a tool to tune film morphology and mechanical properties. Polym. Eng. Sci. 2010, 50, 513–519. [Google Scholar] [CrossRef]
- Turco, R.; Tesser, R.; Cucciolito, M.E.; Fagnano, M.; Ottaiano, L.; Mallardo, S.; Malinconico, M.; Santagata, G.; Di Serio, M. Cynaracardunculus Biomass Recovery: An Eco-Sustainable, Nonedible Resource of Vegetable Oil for the Production of Poly(lactic acid) Bioplasticizers. ACS Sustain. Chem. Eng. 2019, 7, 4069–4077. [Google Scholar] [CrossRef]
- Arrieta, M.P.; López, J.; Hernández, A.; Rayón, E. Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. Eur. Polym. J. 2014, 50, 255–270. [Google Scholar] [CrossRef]
- De Oliveira Mori, C.L.S.; Dos Passos, N.A.; Oliveira, J.E.; Altoé, T.F.; Mori, F.A.; Mattoso, L.H.C.; Scolforo, J.R.; Tonoli, G.H.D. Nanostructured polylactic acid/candeia essential oil mats obtained by electrospinning. J. Nanomater. 2015, 2015, 439253. [Google Scholar]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- López-de-Dicastillo, C.; Gallur Ramón Catalá, M.; Gavara, R.; Hernandez-Muñoz, P. Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. J. Memb. Sci. 2010, 353, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, A.; Landy, D.; Fourmentin, S. Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 2013, 53, 110–114. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. J. Org. Chem. 2014, 10, 2322–2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallardo, S.; De Vito, V.; Malinconico, M.; Volpe, M.G.; Santagata, G.; Di Lorenzo, M.L. Poly(butylene succinate)-based composites containing β-cyclodextrin/D-limonene inclusion complex. Eur. Polym. J. 2016, 79, 82–96. [Google Scholar] [CrossRef]
- Aggarwal, K.K.; Khanuja, S.P.S.; Ahmad, A.; Santha Kumar, T.R.; Gupta, V.K.; Kumar, S. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Menthaspicata and Anethumsowa. Flavour Fragr. J. 2002, 17, 59–63. [Google Scholar] [CrossRef]
- Rancic, A.; Sokovic, M.; Griensven, L.J.L.D.; Vukojevic, J.; Brkic, D.; Ristic, M. Antimicrobial activity of limonene. Matieres Med. 2003, 23, 83–88. [Google Scholar]
- Zhang, Z.; Vriesekoop, F.; Yuan, Q.; Liang, H. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem. 2014, 150, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar]
- Chikhoune, A.; Hazzit, M.; Kerbouche, L.; Baaliouamer, A.; Aissat, K. Tetraclinisarticulata (Vahl) Masters essential oils: Chemical composition and biological activities. J. Essent. Oil. Res. 2013, 25, 300–307. [Google Scholar] [CrossRef]
- Settanni, L.; Palazzolo, E.; Guarrasi, V.; Aleo, A.; Mammina, C.; Moschetti, G.; Germanà, M.A. Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control. 2012, 26, 326–330. [Google Scholar] [CrossRef]
- Dobrzyńska-Mizera, M.; Knitter, M.; Szymanowska, D.; Mallardo, S.; Santagata, G.; Di Lorenzo, M.L. Bio-based composites of poly(L-lactic acid) and d-limonene/β-cyclodextrin inclusion complex for active food packaging: Optical, mechanical, and antimicrobial properties. Food Packag. Shelf Life 2021. submitted. [Google Scholar]
- Dobrzyńska-Mizera, M.; Knitter, M.; Woźniak-Braszak, A.; Baranowski, M.; Sterzyński, T.; Di Lorenzo, M.L. Poly(L-lactic acid)/pine wood bio-based composites. Materials 2020, 13, 3776. [Google Scholar] [CrossRef]
- Trotta, F.; Zanetti, M.; Camino, G. Thermal degradation of cyclodextrins. Polym. Degrad. Stab. 2000, 69, 373–379. [Google Scholar] [CrossRef]
- Serafini, M.R.; Menezes, P.P.; Costa, L.P.; Lima, C.M.; Quintans, L.J., Jr.; Cardoso, J.C.; Matos, J.R.; Soares-Sobrinho, J.L.; Grangeiro, S., Jr.; Nunes, P.S.; et al. Interaction of p-cymene with β-cyclodextrin. J. Therm. Anal. Calorim. 2012, 109, 951–955. [Google Scholar] [CrossRef]
- Capelezzo, A.P.; Cassol Mohr, L.; Dalcanton, F.; Muneron de Mello, J.M.; Fiori, M.A. β-Cyclodextrins as Encapsulating Agents of Essential Oils. In Cyclodextrin—A Versatile Ingredient; Chapter 7; IntechOpen: London, UK, 2018. [Google Scholar]
- Zeng, C.; Zhang, N.W.; Feng, S.Q.; Ren, J. Thermal stability of copolymer derived from l-lactic acid and poly(tetramethylene) glycol through direct polycondensation. J. Therm. Anal. Calorim. 2013, 111, 633–646. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Ovyn, R.; Malinconico, M.; Rubino, P.; Grohens, Y. Peculiar crystallization kinetics of biodegradable poly(lactic acid)/poly(propylene carbonate) blends. Polym. Eng. Sci. 2015, 55, 2698–2705. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Longo, A. N,N-Diethyl-3-methylbenzamide (DEET): A mosquito repellent as functional plasticizer for poly(L-lactic acid). Thermochim. Acta 2019, 677, 180–185. [Google Scholar] [CrossRef]
- Södergård, A.; Näsman, J.H. Melt stability study of various types of poly(l-lactide). Ind. Eng. Chem. Res. 1996, 35, 732–735. [Google Scholar] [CrossRef]
- Androsch, R.; Schick, C.; Di Lorenzo, M.L. Kinetics of Nucleation and Growth of Crystals of Poly(L-lactic acid). In Synthesis, Structure and Properties of Poly(Lactic Acid); Advances in Polymer Science; Springer: Berlin, Germany, 2018; Volume 279, pp. 235–272. [Google Scholar]
- Di Lorenzo, M.L.; Androsch, R. Influence of α’-/α-crystal polymorphism on properties of poly(L-lactic acid). Polym. Int. 2018, 68, 320–334. [Google Scholar] [CrossRef]
- Brüster, B.; Adjoua, Y.-O.; Dieden, R.; Grysan, P.; Federico, C.E.; Berthé, V.; Addiego, F. Plasticization of Polylactide with Myrcene and Limonene as Bio-Based Plasticizers: Conventional vs. Reactive Extrusion. Polymers 2019, 11, 1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly(lactic acid) crystallization. Progr. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Wunderlich, B. Temperature-Modulated Calorimetry of the Crystallization of Polymers Analyzed by Measurements and Model Calculations. J. Therm. Anal. Calor. 1999, 57, 459–472. [Google Scholar] [CrossRef]
- Hazra, A.; Dollimore, D.; Alexander, K. Thermal analysis of the evaporation of compounds used in aromatherapy using thermogravimetry. Thermochim. Acta 2002, 392–393, 221–229. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Rubino, P.; Luijkx, R.; Hélou, M. Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 1: Effect of optical purity of the monomer. Coll. Polym. Sci. 2014, 292, 399–409. [Google Scholar] [CrossRef]
- Ali, F.; Chang, Y.W.; Kang, S.C.; Yoon, J.Y. Thermal, mechanical and rheological properties of poly(lactic acid)/epoxidized soybean oil blends. Polym. Bull. 2009, 62, 91–98. [Google Scholar] [CrossRef]
- Ljungberg, N.; Colombini, D.; Wesslen, B. Plasticization of poly(lactic acid) with oligomeric malonate esteramides: Dynamic mechanical and thermal film properties. J. Appl. Polym. Sci. 2005, 96, 992–1002. [Google Scholar] [CrossRef]
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Di Lorenzo, M.L.; Silvestre, C. Non-isothermal crystallization of polymers. Progr. Polym. Sci. 1999, 24, 917–950. [Google Scholar] [CrossRef]
Designation | Mass Concentration (wt%) | ||
---|---|---|---|
PLLA | CD-Lim | Lim | |
PLLA | 100 | 0 | 0 |
PLLA/20CD-lim | 80 | 20 | 1.2 |
PLLA/30CD-lim | 70 | 30 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrzyńska-Mizera, M.; Knitter, M.; Mallardo, S.; Del Barone, M.C.; Santagata, G.; Di Lorenzo, M.L. Thermal and Thermo-Mechanical Properties of Poly(L-lactic Acid) Biocomposites Containing β-Cyclodextrin/d-Limonene Inclusion Complex. Materials 2021, 14, 2569. https://doi.org/10.3390/ma14102569
Dobrzyńska-Mizera M, Knitter M, Mallardo S, Del Barone MC, Santagata G, Di Lorenzo ML. Thermal and Thermo-Mechanical Properties of Poly(L-lactic Acid) Biocomposites Containing β-Cyclodextrin/d-Limonene Inclusion Complex. Materials. 2021; 14(10):2569. https://doi.org/10.3390/ma14102569
Chicago/Turabian StyleDobrzyńska-Mizera, Monika, Monika Knitter, Salvatore Mallardo, Maria Cristina Del Barone, Gabriella Santagata, and Maria Laura Di Lorenzo. 2021. "Thermal and Thermo-Mechanical Properties of Poly(L-lactic Acid) Biocomposites Containing β-Cyclodextrin/d-Limonene Inclusion Complex" Materials 14, no. 10: 2569. https://doi.org/10.3390/ma14102569
APA StyleDobrzyńska-Mizera, M., Knitter, M., Mallardo, S., Del Barone, M. C., Santagata, G., & Di Lorenzo, M. L. (2021). Thermal and Thermo-Mechanical Properties of Poly(L-lactic Acid) Biocomposites Containing β-Cyclodextrin/d-Limonene Inclusion Complex. Materials, 14(10), 2569. https://doi.org/10.3390/ma14102569