Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes
Abstract
:1. Introduction
2. Proposed Corrugated Disk Resonator Design
3. Analysis of Resonances
4. Discuss
4.1. Discuss of Utilized Resonances
4.2. Discuss of Adjusting Resonances
5. BPF Design
5.1. Design of Four-Pole BPF
- (1)
- Determine the required specifications of BPF, the bandwidth, the center frequency, and the lower sideband frequency, which approximates to the resonant frequency of the M0 mode.
- (2)
- According to the bandwidth, choose a value of r/R, the lower sideband frequency of the passband and the value of r/R can be used to determine the parameters r and R.
- (3)
- The lengths of the grooves can be determined by the bandwidth.
- (4)
- Finally, the length L1 and L2 can be slightly tuned to have good return losses in the passband.
5.2. Design of Eight-Pole BPF
6. Simulations and Measured Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadarig, R.C.; Gomez, M.E.D.C.; Las-Heras, F. A compact band-pass filter with high selectivity and second harmonic suppression. Materials 2013, 6, 5613–5624. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Qi, L.; Shah, S.M.A.; Sun, D.; Li, B. Design of broad stopband filters based on multilayer electromagnetically induced transparency metamaterial structures. Materials 2019, 12, 841. [Google Scholar] [CrossRef] [Green Version]
- Sorocki, J.; Piekarz, I.; Wincza, K.; Gruszczynski, S. Semi-distributed approach to dual-composite right/left-handed transmission lines and their application to bandstop filters. IEEE Microw. Wireless Compon. Lett. 2015, 25, 784–786. [Google Scholar] [CrossRef]
- Shen, G.; Che, W.; Feng, W.; Xue, Q. Analytical design of compact dual-band filters using daul composite right-/left-handed resonators. IEEE Trans. Microw. Theory Tech. 2017, 65, 804–904. [Google Scholar] [CrossRef]
- Shen, G.; Che, W.; Xue, Q. Novel tri-band bandpass filter with independently controllable frequencies, bandwidths, and return losses. IEEE Microw. Wireless Compon. Lett. 2017, 6, 560–562. [Google Scholar] [CrossRef]
- Pors, A.; Moreno, E.; Martin-Moreno, L.; Pendry, J.B.; Garcia-Vidal, F.J. Localized spoof plasmons arise while texturing closed surfaces. Phys. Rev. Lett. 2012, 108, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.J.; Xiao, Q.X.; Yang, B.J. Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.J.; Zhou, Y.J.; Xiao, Q.X. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line. Opt. Express 2015, 23, 21434. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, F.; Xu, H.; Zhang, Y.; Zhang, B. Localized spoof surface plasmons in textured open metal surfaces. Opt. Lett. 2016, 41, 2181–2184. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Wang, J.; Yu, W.; Li, J.; Shen, X. A novel broadband band-pass filter based on spoof surface plasmon polaritons. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Guo, Y.J.; Xu, K.D.; Deng, X.; Cheng, X.; Chen, Q. Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritions. IEEE Electron. Device Lett. 2020, 41, 1165–1168. [Google Scholar] [CrossRef]
- Xu, K.D.; Guo, Y.J.; Yang, Q.; Zhang, Y.L.; Deng, X.; Zhang, A.; Chen, Q. On-chip GaAs-based spoof surface plasmon polaritions at millimeter-wave regime. IEEE Photonics Technol. Lett. 2021, 33, 255–258. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, Y.; Wang, W.; Pan, L.; Yang, Y.; Liu, Y. Double-sided spoof surface plasmon polaritons-line bandpass filter with excellent dual-band filtering and wide upper band suppressions. IEEE Trans. Plasma Sci. 2020, 48, 4134–4143. [Google Scholar] [CrossRef]
- Kim, I.; Kihm, D.K. Nano sensing and energy conversion using surface plasmon resonance (SPR). Materials 2015, 8, 4332–4343. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Lin, H.; Xiong, J.; Hou, J.; Zhou, R.; Deng, F.; Tang, R. A broadband metamaterial absorber design using characteristic modes analysis. J. Appl. Phys. 2021, 129, 134902. [Google Scholar] [CrossRef]
- Xiao, Q.X.; Yang, B.J.; Zhou, Y.J. Planar plasmonic sensor based on spoof localized surface plasmons. In Proceedings of the IEEE 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, Y.; Li, S.; Mei, T.; Lv, B.; Zhang, Y.; Yan, B.; Xu, R. An X-band surface plasmons frequency selective surface based on spoof localized surface plasmons resonators. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, L.; Wu, F.; Li, Y.; Cao, R. Appling spoof surface plasmons to non-destructive testing. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC 2018), Chongqing, China, 12–14 October 2018; pp. 330–333. [Google Scholar]
- Fujita, K. A partially implicit FDTD method for the wideband analysis of spoof localized surface plasmons. IEEE Photonics Tech. Lett. 2015, 27, 1124–1127. [Google Scholar] [CrossRef]
- Cui, T.J.; Shen, X. Spoof surface plasmons on ultrathin corrugated metal structures in microwave and terahertz frequencies. In Proceedings of the Seventh International Congress on Advanced Electromagnetic Materials in Microwaves and Optics-Metamaterials 2013, Bordeaux, France, 16–21 September 2013; pp. 536–539. [Google Scholar]
- Xu, Z.; Li, S.; Liu, Y.; Zhao, H.; Yin, X. Characteristic mode analysis of complex spoof localized surface plasmon resonators. IEEE Access 2018, 6, 2781–2788. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.J.; Xiao, Q.X.; Zhang, C. Tunable spoof localized surface plasmons on dual corrugated disks. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, G.; Sun, L.; Li, Y.; Cao, R. Localised spoof surface plasmon-based sensor for omni-directional cracks detection in metal surfaces. IET Microw. Antennas Propag. 2019, 13, 2061–2066. [Google Scholar] [CrossRef]
- Shibayama, J.; Yamauchi, J.; Nakano, H. Metal disc-type splitter with radially placed gratings for terahertz surface waves. Electron. Lett. 2015, 51, 352–353. [Google Scholar] [CrossRef]
- Yang, Z.B.; Guan, D.F.; Huang, X.; Zhang, H.C.; You, P.; Xu, S.D.; Liu, L.; Yong, S.W. Compact and wideband octuple-mode filter based on hybride substrate integrated waveguide and spoof localized surface plasmon structure. IEEE Trans. Circuits Syst. II Express Briefs 2020. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, S.; Dai, X.; Du, H.; Guo, C.; Zhang, A.; Xu, K.D. Triple-mode bandpass filter based on short-circuited patch resonator. Electron. Lett. 2021. [Google Scholar] [CrossRef]
- Deslandes, D.; Wu, K. Single-substrate integration technique of planar circuits and waveguide filters. IEEE Trans. Microw. Theory Tech. 2003, 51, 593–596. [Google Scholar] [CrossRef]
Ref. | f0 | IL (dB) | FBW (%) | Modes | Stopband | Size (λg × λg ) |
---|---|---|---|---|---|---|
[10] | 8.5 | 1.5 | 35.3 | -- | 1.5f0 | 4.85 × 0.92 |
[12] | 65 | 2.0 | 50.5 | 3 | -- | 0.86 × 0.16 |
[24] | 10.2 | 0.8 | 63.0 | 8 | -- | 1.28 × 1.28 |
BPF-I | 6.5 | 1.6 | 70.0 | 4 | 2.3f0 | 0.65 × 0.65 |
BPF-II | 3.3 | 1.4 | 79.3 | 4 | 3f0 | 0.33 × 0.33 |
BPF-III | 6.4 | 1.7 | 66.3 | 8 | 2.6f0 | 1.28 × 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Liu, S.; Shi, H.; Xu, K.-D.; Dai, X.; Du, H.; Zhang, A. Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials 2021, 14, 2614. https://doi.org/10.3390/ma14102614
Yang Q, Liu S, Shi H, Xu K-D, Dai X, Du H, Zhang A. Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials. 2021; 14(10):2614. https://doi.org/10.3390/ma14102614
Chicago/Turabian StyleYang, Qian, Shuangyang Liu, Hongyu Shi, Kai-Da Xu, Xinyue Dai, Hao Du, and Anxue Zhang. 2021. "Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes" Materials 14, no. 10: 2614. https://doi.org/10.3390/ma14102614
APA StyleYang, Q., Liu, S., Shi, H., Xu, K. -D., Dai, X., Du, H., & Zhang, A. (2021). Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials, 14(10), 2614. https://doi.org/10.3390/ma14102614