Properties of WCCo Composites Produced by the SPS Method Intended for Cutting Tools for Machining of Wood-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sommer, M.; Schubert, W.D.; Zobetz, E.; Warbichler, P. On the formation of very large WC crystals during sintering of ultrafine WC–Co alloys. Int. J. Refract. Met. Hard Mater. 2002, 20, 41–50. [Google Scholar] [CrossRef]
- Ban, Z.G.; Shaw, L.L. Synthesis and processing of nanostructured WC-Co materials. J. Mater. Sci. 2002, 37, 3397–3403. [Google Scholar] [CrossRef]
- Kim, H.C.; Oh, D.Y.; Shon, I.J. Sintering of nanophase WC–15vol.% Co hard metals by rapid sintering process. Int. J. Refract. Met. Hard Mater. 2004, 22, 197–203. [Google Scholar] [CrossRef]
- Raihanuzzaman, R.M.; Han, S.T.; Ghomashchi, R.; Kim, H.S.; Hong, S.J. Conventional sintering of WC with nano-sized Co binder: Characterization and mechanical behavior. Int. J. Refract. Met. Hard Mater. 2015, 53, 2–6. [Google Scholar] [CrossRef]
- Emanuelli, L.; Molinari, A.; Arrighetti, G.; Garoli, G.T. Dependence of the Mechanical Properties on the Microstructural Parameters of WC-Co. Powder Metall. Prog. 2019, 19, 23–33. [Google Scholar] [CrossRef]
- Raihanuzzaman, R.M.; Xie, Z.; Hong, S.J.; Ghomashchi, R. Powder refinement, consolidation and mechanical properties of cemented carbides—An overview. Powder Technol. 2014, 261, 1–13. [Google Scholar] [CrossRef]
- Poetschke, J.; Richter, V.; Holke, R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater 2012, 31, 218–223. [Google Scholar] [CrossRef]
- Soares, E.; Malheiros, L.F.; Sacramento, J.; Valente, M.A.; Oliveira, F.J. Microstructures and properties of submicrometer carbides obtained by conventional sintering. J. Am. Ceram. Soc. 2012, 95, 951–961. [Google Scholar] [CrossRef]
- Rosiński, M.; Wachowicz, J.; Ziętala, M.; Michalski, A. Właściwości kompozytu WCCo spiekanego metodą PPS. Mater. Ceram. 2012, 64, 319–323. [Google Scholar]
- Wang, X.; Fang, Z.Z.; Sohn, H.Y. Grain growth during the early stage of sintering of nanosized WC–Co powder. International. J. Refract. Met. Hard Mater. 2008, 26, 232–241. [Google Scholar] [CrossRef]
- Fattahi, M.; Babapoor, A.; Delbari, S.A.; Ahmadi, Z.; Namini, A.S.; Asl, M.S. Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceram. Int. 2020, 46, 12400–12408. [Google Scholar] [CrossRef]
- Ghasali, E.; Fazili, A.; Alizadeh, M.; Shirvanimoghaddam, K.; Ebadzadeh, T. Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods. Materials 2017, 10, 1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegbenjo, A.O.; Olubambi, P.A.; Potgieter, J.H.; Shongwe, M.B.; Ramakokovhu, M. Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater. Design 2017, 128, 119–129. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, H.; Zhang, E.; You, J.; Ma, X.; Bai, X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. Mat. Sci. Eng. C Mater. 2018, 92, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Klimczyk, P.; Wyżga, P.; Cyboroń, J.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Cygan, S.; Jaworska, L. Phase stability and mechanical properties of Al2O3-cBN composites prepared via spark plasma sintering. Diam. Relat. Mater. 2020, 104, 107762. [Google Scholar] [CrossRef]
- Sulima, I.; Hyjek, P.; Jaworska, L.; Perek-Nowak, M. Influence of ZrB2 on Microstructure and Properties of Steel Matrix Composites Prepared by Spark Plasma Sintering. Materials 2020, 13, 2459. [Google Scholar] [CrossRef] [PubMed]
- Madej, M.; Leszczyńska-Madej, B.; Garbiec, D. High Speed Steel with Iron Addition Materials Sintered by Spark Plasma Sintering. Metals 2020, 10, 1549. [Google Scholar] [CrossRef]
- Lada, P.; Miazga, A.; Wozniak, J.; Konopka, K.; Olszyna, A. The Formation of ZrO 2–Ti Composites by Spark Plasma Sintering. Powder Metall. Met. C 2017, 55, 644–649. [Google Scholar] [CrossRef]
- Bączek, E.; Konstanty, J.; Romański, A.; Podsiadło, M.; Cyboroń, J. Processing and characterization of Fe-Mn-Cu-Sn-C alloys prepared by ball milling and spark plasma sintering. J. Mater. Eng. Perform. 2018, 27, 1475–1483. [Google Scholar] [CrossRef] [Green Version]
- Radingoana, P.M.; Guillemet-Fritsch, S.; Noudem, J.; Olubambi, P.A.; Chevallier, G.; Estournès, C. Thermoelectric properties of ZnO ceramics densified through spark plasma sintering. Ceram. Int. 2020, 46, 5229–5238. [Google Scholar] [CrossRef]
- Dembiczak, T.; Balaga, Z.; Opydo, M.; Kruzel, R.; Garbiec, D.; Dyner, M. The effect of the binder phase and sintering temperature on the properties of Spark Plasma Sintering WC-Co cemented carbides. Manuf. Technol. 2021, 21, 45–50. [Google Scholar]
- Salvo, C.; Chicardi, E.; Poyato, R.; García-Garrido, C.; Jiménez, J.A.; López-Pernía, C.; Tobosque, P.; Mangalaraja, R.V. Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering. Materials 2021, 14, 2217. [Google Scholar] [CrossRef]
- Garbiec, D.; Leshchynsky, V.; Colella, A.; Matteazzi, P.; Siwak, P. Structure and Deformation Behavior of Ti-SiC Composites Made by Mechanical Alloying and Spark Plasma Sintering. Materials 2019, 12, 1276. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, H.; Wang, Q.; Wei, B.; Xin, S.; Gao, Y. Microstructural Evolution and Mechanical Properties of Graphene-Reinforced Ti-6Al-4V Composites Synthesized via Spark Plasma Sintering. Metals 2020, 10, 737. [Google Scholar] [CrossRef]
- Walunj, G.; Bearden, A.; Patil, A.; Larimian, T.; Christudasjustus, J.; Gupta, R.K.; Borkar, T. Mechanical and Tribological Behavior of Mechanically Alloyed Ni-TiC Composites Processed via Spark Plasma Sintering. Materials 2020, 13, 5306. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, J.; Petrus, M.; Cygan, T.; Lachowski, A.; Adamczyk-Cieślak, B.; Moszczyńska, D.; Jastrzębska, A.; Wojciechowski, T.; Ziemkowska, W.; Olszyna, A. Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics. Materials 2020, 13, 5221. [Google Scholar] [CrossRef] [PubMed]
- Olevsky, E.; Froyen, L. Constitutive modeling of spark-plasma sintering of conductive materials. Scripta Mater. 2006, 55, 1175–1178. [Google Scholar] [CrossRef]
- Tokita, M. Recent and future progress on advanced ceramics sintering by Spark Plasma Sintering. Nanotechnologies Russ. 2015, 10, 261–267. [Google Scholar] [CrossRef]
- Hulbert, D.M.; Jiang, D.; Dudina, D.V.; Mukherjee, A.K. The synthesis and consolidation of hard materials by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2009, 27, 367–375. [Google Scholar] [CrossRef]
- Munir, Z.A.; Anselmi-Tamburini, U.; Ohyanagi, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006, 41, 763–777. [Google Scholar] [CrossRef]
- Soares, E.; Bouchonneau, N.; Alves, E.; Alves, K.; Araújo Filho, O.; Mesguich, D.; Estournès, C. Microstructure and Mechanical Properties of AA7075 Aluminum Alloy Fabricated by Spark Plasma Sintering (SPS). Materials 2021, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Chladil, J.; Sedlák, J.; Rybářová, E.Š.; Kučera, M.; Dado, M. Cutting conditions and tool wear when machining wood-based materials. BioResources 2019, 14, 3495–3505. [Google Scholar] [CrossRef]
- Nasir, V.; Cool, J. A review on wood machining: Characterization, optimization, and monitoring of the sawing process. Wood Mater. Sci. Eng. 2020, 15, 1–16. [Google Scholar] [CrossRef]
- Sheikh-Ahmad, J.Y.; Bailey, J.A. High-temperature wear of cemented tungsten carbide tools while machining particleboard and fiberboard. J. Wood Sci. 1999, 45, 445–455. [Google Scholar] [CrossRef]
- Wilkowski, J.; Barlak, M.; Werner, Z.; Zagórski, J.; Czarniak, P.; Podziewski, P.; Szymanowski, K. Lifetime improvement and the cutting forces in nitrogen-implanted drills during wood-based material machining. Wood Fiber Sci. 2019, 51, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Azem, S.; Grosbras, M.; Yefsah, S. Effect of carbon content on the reactive sintering of mixed W-Co-C powders. Rev. Metall. 2004, 101, 419–425. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, J.; Yang, H.; Su, W.; Ruan, J. Synthesis and characterization of WC-Co nanosized composite powders with in situ carbon and gas carbon sources. Met. Mater. Int. 2016, 22, 663–669. [Google Scholar] [CrossRef]
- Guillermet, A.F. Thermodynamic properties of the Co-WC system. Metall. Trans. A 1989, 20, 935–956. [Google Scholar] [CrossRef]
- Sharma, N.; Alam, S.N.; Ray, B.C. Fundamentals of spark plasma sintering (SPS): An ideal processing technique for fabrication of metal matrix nanocomposites. In Spark Plasma Sintering of Materials; Springer: Cham, Switzerland, 2019; pp. 21–59. [Google Scholar]
- Olevsky, E.; Khaleghi, E.; Garcia, C.; Bradbury, W. Fundamentals of spark-plasma sintering: Applications to net-shaping of high strength temperature resistant components. In Materials Science Forum; Trans Tech Publications Ltd.: Bach, Switzerland, 2010; Volume 654, pp. 412–415. [Google Scholar]
- Wilkowski, J.; Barlak, M.; Böttger, R.; Werner, Z.; Konarski, P.; Pisarek, M.; Wachowicz, J.; Von Boranyc, J.; Auriga, A. Effect of nitrogen ion implantation on the life time of WC-Co tools used in particleboard milling. Wood Mater. Sci. Eng. 2021, 1–12. [Google Scholar] [CrossRef]
- Barlak, M.; Wilkowski, J.; Szkarłat, F.; Werner, Z.; Zagórski, J.; Staszkiewicz, B.; Osipiuk, J. The influence of edge defects on the lifetime of wood machining tools. Ann. WULS SGGW For. Wood Technol. 2018, 104, 533–539. [Google Scholar]
Wood-Based Board | Density [kg/m3] | Brinell Hardness | Bending Strength [%] | Elasticity Module [MPa] | Sand Content [%] |
---|---|---|---|---|---|
Three-layer chipboard | 648 | 2.6 | 8.7 | 2212 | 0.185 |
Experimental Materials | Apparent Density (g/cm−3) | Relative Density (%) | Hardness HV30 | Fracture Toughness (MPa/m ½) |
---|---|---|---|---|
Submicron (sintering) | 14.74 | 99.26 | 1736 ± 38 | 11.3 |
Ultrafine (sintering) | 15.20 | 99.99 | 1622 ± 40 | 12.5 |
Commercial | 15.20 | 100.00 | 1705 ± 40 | 26.6 |
Experimental Materials | Applied Load (N) | Distance (m) | COF (-) | Wear Rate (%) |
---|---|---|---|---|
Submicron | 5 | 110 | 0.130 | 0.256 |
10 | 110 | 0.221 | 0.435 | |
20 | 110 | 0.397 | 0.781 | |
Ultrafine | 5 | 110 | 0.100 | 0.035 |
10 | 110 | 0.175 | 0.061 | |
20 | 110 | 0.323 | 0.112 | |
Commercial | 5 | 110 | 0.151 | 0.304 |
10 | 110 | 0.277 | 0.557 | |
20 | 110 | 0.541 | 1.088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wachowicz, J.; Dembiczak, T.; Stradomski, G.; Bałaga, Z.; Dyner, M.; Wilkowski, J. Properties of WCCo Composites Produced by the SPS Method Intended for Cutting Tools for Machining of Wood-Based Materials. Materials 2021, 14, 2618. https://doi.org/10.3390/ma14102618
Wachowicz J, Dembiczak T, Stradomski G, Bałaga Z, Dyner M, Wilkowski J. Properties of WCCo Composites Produced by the SPS Method Intended for Cutting Tools for Machining of Wood-Based Materials. Materials. 2021; 14(10):2618. https://doi.org/10.3390/ma14102618
Chicago/Turabian StyleWachowicz, Joanna, Tomasz Dembiczak, Grzegorz Stradomski, Zbigniew Bałaga, Marcin Dyner, and Jacek Wilkowski. 2021. "Properties of WCCo Composites Produced by the SPS Method Intended for Cutting Tools for Machining of Wood-Based Materials" Materials 14, no. 10: 2618. https://doi.org/10.3390/ma14102618
APA StyleWachowicz, J., Dembiczak, T., Stradomski, G., Bałaga, Z., Dyner, M., & Wilkowski, J. (2021). Properties of WCCo Composites Produced by the SPS Method Intended for Cutting Tools for Machining of Wood-Based Materials. Materials, 14(10), 2618. https://doi.org/10.3390/ma14102618