The Effect of Surfactant-Modified Montmorillonite on the Cross-Linking Efficiency of Polysiloxanes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of the Montmorillonite
2.3. Preparation of Clay Mineral–Polysiloxane Nanocomposite
2.4. Characterization Methods
3. Results and Discussion
3.1. Characterization of the Raw and Intercalated Montmorillonite
3.2. Monitoring of Cross-Linking Eficiency
3.3. Characterization of Clay Mineral–Polysiloxane Nanocomposite—XRD and TEM Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Paiva, L.B.; Morales, A.R.; Valenzuela Díaz, F.R. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mat. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Bhattacharya, M. Polymer Nanocomposites-A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef]
- Aranda, P.; Ruiz-Hitzky, E. Poly(ethylene oxide)-silicate intercalation materials. Chem. Mater. 1992, 4, 1395–1403. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Lin, C.-Y.; Yeh, J.-M.; Lin, W.-H. Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer 2003, 44, 3553–3560. [Google Scholar] [CrossRef]
- LeBaron, P. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 1999, 15, 11–29. [Google Scholar] [CrossRef]
- Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T.C. Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chem. Mater. 2001, 13, 3516–3523. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M.; Lomakin, S.; Camino, G. Polymer layered silicate nanocomposites. Macromol. Mater. Eng. 2000, 279, 1–9. [Google Scholar] [CrossRef]
- Madejová, J.; Barlog, M.; Jankovič, Ľ.; Slaný, M.; Pálková, H. Comparative study of alkylammonium- and alkylphosphonium-based analogues of organo-montmorillonites. Appl. Clay Sci. 2021, 200, 105894. [Google Scholar] [CrossRef]
- Bee, S.-L.; Abdullah, M.A.A.; Bee, S.-T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 2018, 85, 57–82. [Google Scholar] [CrossRef]
- Mark, J.E. Some interesting things about polysiloxanes. Acc. Chem. Res. 2004, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.F.; Clément, F.; Giannelis, E.P. On The Origins of Silicate Dispersion in Polysiloxane/Layered-Silicate Nanocomposites. Adv. Funct. Mater. 2006, 16, 417–425. [Google Scholar] [CrossRef]
- Lewicki, J.P.; Liggat, J.J.; Pethrick, R.A.; Patel, M.; Rhoney, I. Investigating the ageing behavior of polysiloxane nanocomposites by degradative thermal analysis. Polym. Degrad. Stabil. 2008, 93, 158–168. [Google Scholar] [CrossRef]
- Lewicki, J.P.; Liggat, J.J.; Patel, M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym. Degrad. Stabil. 2009, 94, 1548–1557. [Google Scholar] [CrossRef]
- Ma, J.; Xu, J.; Ren, J.-H.; Yu, Z.-Z.; Mai, Y.-W. A new approach to polymer/montmorillonite nanocomposites. Polymer 2003, 44, 4619–4624. [Google Scholar] [CrossRef]
- Burnside, S.D.; Giannelis, E.P. Nanostructure and properties of polysiloxane-layered silicate nanocomposites. J. Polym. Sci. B Polym. Phys. 2000, 38, 1595–1604. [Google Scholar] [CrossRef]
- Burnside, S.D.; Giannelis, E.P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater. 1995, 7, 1597–1600. [Google Scholar] [CrossRef]
- Kirby, R.; Mosurkal, R.; Li, L.; Kumar, J.; Soares, J.W. Polysiloxane-based Organoclay Nanocomposites as Flame Retardants. Polym. Plast. Technol. 2013, 52, 1527–1534. [Google Scholar] [CrossRef]
- Anyszka, R.; Bieliński, D.M.; Pędzich, Z.; Szumera, M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J. Therm. Anal. Calorim. 2015, 119, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Segatelli, M.G.; Kaneko, M.L.Q.A.; Silva, V.P.; Yoshida, I.V.P. Porous Ceramic Materials from Polysiloxane-Clay Composites. J. Brazil. Chem. Soc. 2014, 716–725. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Ko, S. Nanoclays in Food and Beverage Packaging. J. Nanomater. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Simons, R.; Qiao, G.G.; Powell, C.E.; Bateman, S.A. Effect of surfactant architecture on the properties of polystyrene-montmorillonite nanocomposites. Langmuir 2010, 26, 9023–9031. [Google Scholar] [CrossRef] [PubMed]
- Matisons, J.; Marciniec, B. Hydrosilylation: A Comprehensive Review on Recent Advances; Springer: Dordrecht, The Netherlands, 2009; ISBN 9781402081729. [Google Scholar]
- Nyczyk-Malinowska, A.; Wójcik-Bania, M.; Gumuła, T.; Hasik, M.; Cypryk, M.; Olejniczak, Z. New precursors to SiCO ceramics derived from linear poly(vinylsiloxanes) of regular chain composition. J. Eur. Ceram. Soc. 2014, 34, 889–902. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc. 2010, 73. [Google Scholar] [CrossRef]
- Alateyah, A.I.; Dhakal, H.N.; Zhang, Z.Y. Processing, Properties, and Applications of Polymer Nanocomposites Based on Layer Silicates: A Review. Adv. Polym. Technol. 2013, 32, s651. [Google Scholar] [CrossRef]
- Wójcik-Bania, M. Influence of the addition of organo-montmorillonite nanofiller on cross-linking of polysiloxanes—FTIR studies. Spectrochim. Acta A 2021, 252, 119491. [Google Scholar] [CrossRef]
- Ciesielski, H.; Sterckeman, T.; Santerne, M.; Willery, J.P. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie 1997, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Lagaly, G.; Ogawa, M.; Dékány, I. Clay Mineral–Organic Interactions. In Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 435–505. ISBN 9780080993645. [Google Scholar]
- Paul, D.R.; Zeng, Q.H.; Yu, A.B.; Lu, G.Q. The interlayer swelling and molecular packing in organoclays. J. Colloid Interf. Sci. 2005, 292, 462–468. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Tyagi, B.; Chudasama, C.D.; Jasra, R.V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta A 2006, 64, 273–278. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-0-470-61637-6. [Google Scholar]
- Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. J. Colloid Interf. Sci. 2005, 286, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Zope, I.S.; Dasari, A.; Yu, Z.-Z. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites. Materials 2017, 10, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Brauner, J.W.; Gericke, A. External infrared reflection absorption spectrometry of monolayer films at the air-water interface. Annu. Rev. Phys. Chem. 1995, 46, 305–334. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ishida, H. Concentration-Dependent Conformation of Alkyl Tail in the Nanoconfined Space: Hexadecylamine in the Silicate Galleries. Langmuir 2003, 19, 2479–2484. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Clays, Pillared Layer Structures and Zeolites. In Adsorption by Powders and Porous Solids; Elsevier: Amsterdam, The Netherlands, 1999; pp. 355–399. ISBN 9780125989206. [Google Scholar]
- He, H.; Zhou, Q.; Martens, W.N.; Kloprogge, T.J.; Yuan, P.; Xi, Y.; Zhu, J.; Frost, R.L. Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clay Clay Miner. 2006, 54, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhu, L.; Zhu, R.; Tian, S.; Li, J. Surface microtopography of surfactant modified montmorillonite. Appl. Clay Sci. 2009, 45, 70–75. [Google Scholar] [CrossRef]
- Shah, K.J.; Mishra, M.K.; Shukla, A.D.; Imae, T.; Shah, D.O. Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. J. Colloid Interf. Sci. 2013, 407, 493–499. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, P.; Chen, X.; Bao, C.; Zhao, R.; Hu, J.; Liu, C.; Lin, Q. Preparation and characterization of octyl phenyl polyoxyethylene ether modified organo-montmorillonite for ibuprofen controlled release. Appl. Clay Sci. 2020, 189, 105519. [Google Scholar] [CrossRef]
- Hasik, M.; Wójcik-Bania, M.; Nyczyk, A.; Gumuła, T. Polysiloxane–POSS systems as precursors to SiCO ceramics. React. Funct. Polym. 2013, 73, 779–788. [Google Scholar] [CrossRef]
- Wójcik-Bania, M.; Stochmal, E.; Duraczyńska, D. Silver nanoparticles deposited on polysiloxane networks as active catalysts in dye degradation. J. Appl. Polym. Sci. 2020, 137, 49170. [Google Scholar] [CrossRef]
- Wójcik-Bania, M.; Olejarka, J.; Gumuła, T.; Łącz, A.; Hasik, M. Influence of metallic palladium on thermal properties of polysiloxane networks. Polym. Degrad. Stabil. 2014, 109, 249–260. [Google Scholar] [CrossRef]
- Wójcik-Bania, M.; Łącz, A.; Nyczyk-Malinowska, A.; Hasik, M. Poly(methylhydrosiloxane) networks of different structure and content of Si-H groups: Physicochemical properties and transformation into silicon oxycarbide ceramics. Polymer 2017, 130, 170–181. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Slonimski, G.L.; Zhdanov, A.A.; Levin, V.Y.; Godovski, Y.K.; Moskalenko, V.A. Some physical properties of polyorganosiloxanes. I. Linear polyorganosiloxanes. J. Polym. Sci. A 1 1972, 10, 1–22. [Google Scholar] [CrossRef]
- Okamoto, M.; Nam, P.H.; Maiti, P.; Kotaka, T.; Hasegawa, N.; Usuki, A. A House of Cards Structure in Polypropylene/Clay Nanocomposites under Elongational Flow. Nano Lett. 2001, 1, 295–298. [Google Scholar] [CrossRef]
Sample | SBET [m2/g] | [cm3/g] | [cm3/g] (Share [%]) | [cm3/g] (Share [%]) | [cm3/g] (Share [%]) |
---|---|---|---|---|---|
Mt | 28.5 | 0.071 | 0.013 (18.3) | 0.035 (49.3) | 0.023 (32.4) |
MtC12 | 47.7 | 0.221 (3.11) a | 0.015 (6.8) | 0.112 (50.7) | 0.094 (42.5) |
MtC14 | 31.4 | 0.176 (2.48) a | 0.014 (8.0) | 0.071 (40.3) | 0.091 (51.7) |
MtC16 | 26.9 | 0.196 (2.76) a | 0.012 (6.1) | 0.091 (46.4) | 0.093 (47.5) |
MtBC12 | 63.0 | 0.314 (4.42) a | 0.023 (7.3) | 0.141 (44.9) | 0.150 (47.8) |
MtBC14 | 71.6 | 0.334 (4.70) a | 0.034 (10.2) | 0.157 (47.0) | 0.143 (42.8) |
MtBC16 | 53.6 | 0.346 (4.87) a | 0.027 (7.8) | 0.139 (40.2) | 0.180 (52.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Bania, M.; Matusik, J. The Effect of Surfactant-Modified Montmorillonite on the Cross-Linking Efficiency of Polysiloxanes. Materials 2021, 14, 2623. https://doi.org/10.3390/ma14102623
Wójcik-Bania M, Matusik J. The Effect of Surfactant-Modified Montmorillonite on the Cross-Linking Efficiency of Polysiloxanes. Materials. 2021; 14(10):2623. https://doi.org/10.3390/ma14102623
Chicago/Turabian StyleWójcik-Bania, Monika, and Jakub Matusik. 2021. "The Effect of Surfactant-Modified Montmorillonite on the Cross-Linking Efficiency of Polysiloxanes" Materials 14, no. 10: 2623. https://doi.org/10.3390/ma14102623
APA StyleWójcik-Bania, M., & Matusik, J. (2021). The Effect of Surfactant-Modified Montmorillonite on the Cross-Linking Efficiency of Polysiloxanes. Materials, 14(10), 2623. https://doi.org/10.3390/ma14102623