Effect of FSP on Tribological Properties of Grade B89 Tin Babbitt
Abstract
:1. Introduction
2. Materials and Methods
- counter-sample—49.5 mm, steel 100Cr6, heat-treated to hardness of 55 HRC
- rotational speed—163 RPM
- load—50 N
- sliding distance—1000 m, 10,000 m, 10 cycles × 1000 m.
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Mechanical Properties
3.3. Tribological Properties
4. Conclusions
- The application of FSP modification to the B89 alloy affects refinement of and a change in the morphology of CuSn precipitates, and the best results were achieved with the pin rotational speed of 560 RPM.
- The modification reduces the hardness of the studied alloys, which is the result of recrystallization of the matrix during the operation of the pin, while the flexural strength increases; nonetheless, in the case of the alloy modified with the pin rotational speed of 560 RPM, cracking is located in the transition zone, limiting the beneficial effect of recrystallization and refinement of the particles as a result of this process.
- In the case of the B89 alloy under lubricated friction conditions, the use of FSP improves the coefficient of friction in relation to the starting material most strongly in the case of the alloy after modification with the pin rotational speed of 560 RPM.
- The weight loss, which is one of the measures of wear resistance, decreases as a result of FSP; the higher the pin rotational speed used, the more the weight loss decreases, i.e., it leads to improvement of the wear resistance of the studied alloys under specific tribological test conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadykov, F.A.; Barykin, N.P.; Valeev, I.S.; Danilenko, V.N. Influence of the Structural State on Mechanical Behavior of Tin Babbit. J. Mater. Eng. Perform. 2003, 12, 29–36. [Google Scholar] [CrossRef]
- Barykin, N.P.; Sadykov, F.A.; Aslanyan, I.R. Wear and failure of babbit bushes in steam turbine sliding bearings. J. Mater. Eng. Perform. 2000, 9, 110–115. [Google Scholar] [CrossRef]
- Potekhin, B.A.; Il’yushin, V.V.; Khristolyubo, A.S. Effect of casting methods on the structure and properties of tin babbit. Met. Sci. Heat Treat. 2009, 51, 378–382. [Google Scholar] [CrossRef]
- Valeeva, A.K.; Valeev, I.S.; Fazlyakhmetov, R.F. On the Wear Rate of an Sn11Sb5.5Cu Babbitt. J. Frict. Wear 2017, 38, 53–57. [Google Scholar] [CrossRef]
- Leszczyńska-Madej, B.; Madej, M.; Hrabia-Wiśnios, J. Effect of chemical composition on the microstructure and tribological properties of Sn-based alloys. J. Mater. Eng. Perform. 2019, 28, 4065–4073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yang, Z.Y.; Fu, D.X.; Li, X.F.; Chen, W. Preparation of the Wire of ZChSnSb11-6 Used for Remanufacturing Thermal Spraying. Phys. Procedia 2013, 50, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Tarel’nik, V.B.; Paustovskiib, A.V.; Tkachenkob, Y.G.; Martsinkovskiia, V.S.; Konoplyanchenkoa, E.V.; Antoshevskii, K. Electric-Spark Coatings on a Steel Base and Contact Surface for Optimizing the Working Characteristics of Babbitt Friction Bearings. Surf. Eng. Appl. Electrochem. 2017, 53, 285–294. [Google Scholar] [CrossRef]
- Nascimento, A.R.C.; Ettouil, F.B.; Moreau, C.; Savoie, S.; Schulz, R. Production of Babbitt Coatings by High Velocity Oxygen Fuel (HVOF) Spraying. J. Therm. Spray Technol. 2017, 26, 1732–1740. [Google Scholar] [CrossRef]
- Valeeva, A.K.; Valeev, I.; Fazlyakhmetov, R.; Pshenichnyuk, A. On the mechanism of running- in during wear tests of a babbitt B83. Phys. Met. Metallogr. 2015, 116, 509–511. [Google Scholar] [CrossRef]
- Goudarzi, M.M.; Jenabali Jahromi, S.A.; Nazarboland, A. Investigation of characteristics of tin-based white metals as a bearing material. Mater. Des. 2009, 30, 2283–2288. [Google Scholar] [CrossRef]
- Leszczyńska-Madej, B.; Madej, M. Effect of the heat treatment on the microstructure and properties of tin Babbitt. Kov. Mater. 2013, 51, 1–10. [Google Scholar]
- Leszczyńska-Madej, B.; Madej, M. The tribological properties and the microstructure investigations of tin babbit with Pb. Arch. Metall. Mater. 2016, 61, 1861–1868. [Google Scholar] [CrossRef]
- Barykin, N.P.; Fazlyakhmetov, R.F.; Valeeva, A.K. Effect of the Structure of Babbit B83 on the Intensity of Wear of Tribocouplings. Met. Sci. Heat Treat. 2006, 48, 88–91. [Google Scholar] [CrossRef]
- Korshunov, L.G.; Noskova, N.I.; Korznikov, A.V.; Chernenko, N.L.; Vil’danova, N.F. Effect of severe plastic deformation on the microstructure and tribological properties of a babbit B83. Phys. Metall. Metallogr. 2009, 108, 519–526. [Google Scholar] [CrossRef]
- Mishra, R.S.; Mahoney, M.W.; McFadden, S.X.; Mara, N.A.; Mukherjee, A.K. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 2000, 42, 163–168. [Google Scholar] [CrossRef]
- Nakata, K.; Kim, Y.G.; Fujii, H.; Tsumura, T.; Komazaki, T. Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Mater. Sci. Eng. A 2006, 437, 274–280. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Pilchak, A.L.; Juhas, M.C.; Williams, J.C. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr. Mater. 2008, 58, 361–366. [Google Scholar] [CrossRef]
- Sun, N.; Apelian, D. Friction stir processing of aluminum cast alloys for high performance applications. J. Miner. Met. Mater. Soc. 2011, 63, 44–50. [Google Scholar] [CrossRef]
- Sharma, S.R.; Ma, Z.Y.; Mishra, R.S. Effect of friction stir processing on fatigue behavior of A356 alloy. Scr. Mater. 2004, 51, 237–241. [Google Scholar] [CrossRef]
- Berbon, P.B.; Bingel, W.H.; Mishra, R.S.; Bampton, C.C.; Mahoney, M.W. Friction stir processing: A tool to homogenize nanocomposite aluminum alloys. Scr. Mater. 2001, 44, 61–66. [Google Scholar] [CrossRef]
- Shamsipur, A.; Kashani-Bozorg, S.F.; Zarei-Hanzaki, A. The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surfacelayer. Surf. Coat. Technol. 2001, 206, 1372–1381. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Simchi, A.; Kokabi, A.H.; Gerlich, A.P. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization. Mater. Charact. 2015, 108, 102–114. [Google Scholar] [CrossRef]
- Yazdipour, A.; Shafiei, M.; Dehghani, K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater. Sci. Eng. A 2009, 527, 192–197. [Google Scholar] [CrossRef]
- Liu, H.; Fujii, H. Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding. Mater. Sci. Eng. A 2018, 711, 140–148. [Google Scholar] [CrossRef]
- Sivanesh Prabhu, M.; Elaya Perumal, A.; Arulvel, S. Development of multi-pass processed AA6082/SiCp surface composite using friction stir processing and its mechanical and tribology characterization. Surf. Coat. Technol. 2020, 394, 1–10. [Google Scholar]
- Leszczyńska-Madej, B.; Madej, M.; Hrabia-Wiśnios, J.; Węglowska, A. Effects of the Processing Parameters of Friction Stir Processing on the Microstructure, Hardness and Tribological Properties of SnSbCu Bearing Alloy. Materials 2020, 13, 5826. [Google Scholar] [CrossRef] [PubMed]
- ASTM International. Standard Test Method for Wear Preventive Properties of Lubricating Greases Using the (Falex) Block on Ring Test Machine in Oscillating Motion; ASTM D3704-96; ASTM International: West Conshohocken, PA, USA, 2017; Available online: http://www.astm.org (accessed on 23 February 2021).
- Mishra, R.S.; De, P.S.; Kumar, N. Friction Stir Welding and Processing—Science and Engineering; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Hamilton, C.; Węglowski, M.S.; Dymek, S. A Simulation of Friction-Stir Processing for Temperature and Material Flow. Metall. Mater. Trans. B 2015, 46B, 1409–1418. [Google Scholar] [CrossRef]
- Węglowski, M.S.; Sedek, P.; Hamilton, C. Experimental analysis of residual stress in friction stir processed cast AlSi9Mg aluminum alloy. Key Eng. Mater. 2016, 682, 18–23. [Google Scholar] [CrossRef]
Element | Weight (%) | Atom (%) |
---|---|---|
Cu | 6.20 | 11.02 |
Sn | 85.43 | 81.38 |
Sb | 7.90 | 7.33 |
Pb | 0.48 | 0.26 |
Total | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madej, M.; Leszczyńska-Madej, B.; Hrabia-Wiśnios, J.; Węglowska, A. Effect of FSP on Tribological Properties of Grade B89 Tin Babbitt. Materials 2021, 14, 2627. https://doi.org/10.3390/ma14102627
Madej M, Leszczyńska-Madej B, Hrabia-Wiśnios J, Węglowska A. Effect of FSP on Tribological Properties of Grade B89 Tin Babbitt. Materials. 2021; 14(10):2627. https://doi.org/10.3390/ma14102627
Chicago/Turabian StyleMadej, Marcin, Beata Leszczyńska-Madej, Joanna Hrabia-Wiśnios, and Aleksandra Węglowska. 2021. "Effect of FSP on Tribological Properties of Grade B89 Tin Babbitt" Materials 14, no. 10: 2627. https://doi.org/10.3390/ma14102627
APA StyleMadej, M., Leszczyńska-Madej, B., Hrabia-Wiśnios, J., & Węglowska, A. (2021). Effect of FSP on Tribological Properties of Grade B89 Tin Babbitt. Materials, 14(10), 2627. https://doi.org/10.3390/ma14102627