Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, M.; Hinterding, R.; Feldhoff, A. High power factor vs. high ZT—A review of thermoelectric materials for high-temperature application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Sato, N.; Gao, W.; Yubuta, K.; Kawamoto, N.; Mitome, M.; Kurashima, K.; Owada, Y.; Nagase, K.; Lee, C.-H.; et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021, 1. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. Ising pairing in superconducting NbSe2 atomic layers. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Peng, Q.; Chen, Y. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons. Sci. Rep. 2016, 6, 21639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Pan, Y.; Wang, D.; Deng, H. Structural Stability and Electronic and Optical Properties of Bulk WS2 from First-Principles Investigations. J. Electron. Mater. 2020, 49, 7363. [Google Scholar] [CrossRef]
- Ataca, C.; Şahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983. [Google Scholar] [CrossRef]
- Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W.N.; Wu, X.; Zeng, X.C. MoS2/MX2 heterobilayers: Bandgap engineering via tensile strain or external electrical field. Nanoscale 2014, 6, 2879. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Basu, R.; Bhatt, R.; Pitale, S.; Singh, A.; Aswal, D.K.; Gupta, S.K.; Navaneethan, M.; Hayakawa, Y. CuCrSe2: A high performance phonon glass and electron crystal thermoelectric material. J. Mater. Chem. A 2013, 1, 11289. [Google Scholar] [CrossRef]
- Srivastana, D.; Tewari, G.C.; Kappinen, M.; Nieminen, R.M. First-principles study of layered antiferromagnetic CuCrX2 (X = S, Se and Te). J. Phys. Condens. Matter. 2013, 25, 105504. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Peregudova, N.N.; Syrokvashin, M.M.; Mazalov, L.N.; Sokolov, V.V.; Yu, I.; Filatova, A.; Pichugin, Y. Xanes of X-ray absorbtion K edges of chromium dichalcogenides CuCr1-xM′xS2 and MCrX2. J. Struct. Chem. 2016, 57, 1355. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Pelmenev, K.G.; Zvereva, V.V.; Peregudova, N.N. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1− xFexS2 and Cu1− xFexCrS2. J. Electron. Mater. 2018, 47, 3392. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Sotnikov, A.V.; Kriventsov, V.V. XANES investigation of novel lanthanide-doped CuCr0.99Ln0.01S2 (Ln = La, Ce) solid solutions. Appl. Phys. A 2020, 126, 537. [Google Scholar] [CrossRef]
- Hansen, A.L.; Dankwort, T.; Groβ, H.; Etter, M.; König, J.; Duppel, V.; Kienle, L.; Bensch, W. Structural properties of the thermoelectric material CuCrS2 and of deintercalated CuxCrS2 on different length scales: X-ray diffraction, pair distribution function and transmission electron microscopy studies. J. Mater. Chem. C 2017, 36, 9331. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Kumar, P.; Rastogi, A.K.; Pasha, S.K.; Gupta, G. Increase in the thermoelectric efficiency of the disordered phase of layered antiferromagnetic CuCrS2. J. Electron. Mater. 2011, 40, 2368. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, B.-P.; Ge, Z.-H.; Shang, P.-P. Preparation and thermoelectric properties of ternary superionic conductor CuCrS2. J. Solid State Chem. 2012, 186, 109. [Google Scholar] [CrossRef]
- Kaltzoglou, A.; Vaqueiro, P.; Barbier, T.; Guilmeau, E.; Powell, A.V. Ordered-defect sulfides as thermoelectric materials. J. Electron. Mater. 2014, 43, 2029. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V. Magnetic and transport properties of CuCr1-x VxS2 compounds. Phys. Solid State 1999, 41, 1327. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R. Synthesis and X-ray diffraction study of CuCr1-xVxS2. Inorg. Mater. 2000, 36, 437. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V.; Abdullin, A.R. Investigation of superionic phase transition in the CuCr1-xVxS2 system by x-ray diffraction and magnetic methods. Phys. Solid State. 2000, 42, 1508. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R.; Kutusheva, R.M. Structural properties and ionic conductivities of CuCr1-xVxS2solid solutions. Phys. Stat. Sol. 2003, 236, 29–33. [Google Scholar] [CrossRef]
- Akmanova, G.R.; Davleshina, A.D. Ionic conductivity and diffusion in superionic conductors CuCrS2-AgCrS2. Lett. Mater. 2013, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Engelsman, F.M.R.; Wiegers, G.A.; Jellinek, F.; van Laar, B. Crystal structures and magnetic structures of some metal (I) chromium (III) sulfides and selenides. J. Solid State Chem. 1973, 6, 574. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskii, G.A. Metal-insulator transition, magnetoresistance, and magnetic properties of 3d-sulfides. Low Temp. Phys. 2006, 32, 725. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Vanadium doped layered copper-chromium sulfides: The correlation between the magnetic properties and XES data. Vacuum 2020, 179, 109390. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bohra, A.; Basu, R.; Bhatt, R.; Ahmad, S.; Meshram, K.N.; Debnath, A.K.; Singh, A.; Sarkar, S.K.; Navneethan, M.; et al. High thermoelectric performance of (AgCrSe2)0.5(CuCrSe2)0.5 nano-composites having all-scale natural hierarchical architectures. J. Mater. Chem. A 2014, 2, 17122. [Google Scholar] [CrossRef]
- Wu, D.; Huang, S.; Feng, D. Revisiting AgCrSe2 as a promising thermoelectric material. Phys. Chem. Chem. Phys. 2016, 18, 23872. [Google Scholar] [CrossRef] [PubMed]
- Vassilieva, I.G.; Kardash, T.Y.; Malakhov, V.V. Phase transformations of CuCrS2: Structural and chemical study. J. Struct. Chem. 2009, 50, 288. [Google Scholar] [CrossRef]
- Hong, J.; Delaire, O. Electronic instability and anharmonicity in SnSe. Mater. Today Phys. 2019, 10, 100093. [Google Scholar] [CrossRef] [Green Version]
- Suwardi, A.; Cao, J.; Hu, L.; Wei, F.; Wu, J.; Zhao, Y.; Lim, S.H.; Yang, L.; Tan, X.Y.; Chien, S.W.; et al. Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A. 2020, 8, 18880. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database, Version 2.1.0; Leibniz Institute for Information Infrastructure, FIZ Karlsruhe: Eggenstein-Leopoldshafen, Germany, 2014.
- BAND 2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available online: http://www.scm.com (accessed on 21 May 2021).
- Murphy, D.W.; Chen, H.S.; Tell, B. Superionic conduction in AgCrS2 and AgCrSe2. J. Electrochem. Soc. 1977, 124, 1268. [Google Scholar] [CrossRef]
- Thomas, G.A. Critical resistivity near an order-disorder transition. Phys. Rew. Let. 1973, 31, 241. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Peregudova, N.N.; Kanazhevskii, V.V.; Mazalov, L.N.; Sokolov, V.V. Effects of the nearest-neighbor environment of copper atoms on the XANES spectra of layered chromium-copper disulfides. J. Struct. Chem. 2015, 56, 596. [Google Scholar] [CrossRef]
- Le Nagard, N.; Collin, G.; Gorochov, O. Etude structurale et proprietes physiques de CuCrS2. Mat. Res. Bull. 1979, 14, 1411. [Google Scholar] [CrossRef]
- Khumalo, F.S.; Huges, H.P. Vacuum-ultraviolet reflectivity spectra of some α-NaFeO2 layer-type compounds. Phys. Rew. B 1980, 22, 4066. [Google Scholar] [CrossRef]
Atmosphere | Annealing Temperature, °C | ρ, g/cm3 |
---|---|---|
vacuum | 650 (compressing pressure of 70 MPa) | 4.07 |
argon | 800 | 3.52 |
Sample | Mean Element Concentration, Mass% | ||
---|---|---|---|
Cu | Cr | S | |
Reference concentration | 35 | 29 | 36 |
Powder | 35 | 29 | 36 |
Vacuum treated at 650 °C | 36 | 29 | 35 |
Argon treated at 800 °C | 35 | 29 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V. Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials 2021, 14, 2729. https://doi.org/10.3390/ma14112729
Korotaev EV, Syrokvashin MM, Filatova IY, Sotnikov AV. Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials. 2021; 14(11):2729. https://doi.org/10.3390/ma14112729
Chicago/Turabian StyleKorotaev, Evgeniy V., Mikhail M. Syrokvashin, Irina Yu. Filatova, and Aleksandr V. Sotnikov. 2021. "Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2" Materials 14, no. 11: 2729. https://doi.org/10.3390/ma14112729
APA StyleKorotaev, E. V., Syrokvashin, M. M., Filatova, I. Y., & Sotnikov, A. V. (2021). Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials, 14(11), 2729. https://doi.org/10.3390/ma14112729