Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Their Preparation
2.2. Chemical and Geotechnical Properties
2.3. Methods Used for Brick Samples Preparation
3. Results and Discussion
3.1. Properties of Raw Materials
3.2. Shrinkage of Manufactured Bricks
3.3. Dry Density of Manufactured Bricks
3.4. Initial Rate of Suction (IRS) of Manufactured Bricks
3.5. Compressive Strength of Manufactured Bricks
3.6. Leachability of Fired Clay Brick
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halimah, H. Environmental Quality Report, Department of Environment Malaysia; Ministry of Natural Resources and Environment Malaysia: Putrajaya, Malaysia, 2014. [Google Scholar]
- Adenan, S. Environmental Quality Report, Environmental Quality (Scheduled Wastes) Regulations; Ministry of Natural Resources and Environment: Putrajaya, Malaysia, 2005. [Google Scholar]
- Raghavendra, T.; Udayashankar, B.C. Engineering properties of controlled low strength materials using fly ash and waste gypsum wall boards. Constr. Build. Mater. 2015, 101, 548–557. [Google Scholar] [CrossRef]
- Guidotti, T.L. Hydrogen sulfide intoxication. Handb. Clin. Neuro. 2015, 131, 111–133. [Google Scholar]
- Jong, D.; Joss, M.; Schraven, S.; Zhan, D.; Weijnen, M. Sustainable smart resilient low carbon eco knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Raco, M.; Street, E. Resilience planning, economic change and the politics of post-recession development in London and Hong Kong. Urban Plan 2012, 49, 1065–1087. [Google Scholar] [CrossRef]
- Basnou, C.; Alvarez, E.; Bagaria, G.; Guardiola, M.; Isern, R.; Vicente, P.; Pino, J. Spatial patterns of land use changes across a mediterranean metropolitan landscape: Implications for biodiversity management. Environ. Manag. 2013, 52, 971–980. [Google Scholar] [CrossRef]
- British Standard Institution. Method of Test for Soil for Civil Engineering Purposes-Part 2: Classification Tests. London: BS 1377:2. 1990. Available online: http://www.standardsuk.com/ (accessed on 31 August 1990).
- British Standard Institution. Methods of Test for Soils for Civil Engineering Purposes-Part 4: Compaction-Related Tests. London: BS 1377:4. 1990. Available online: http://www.standardsuk.com/ (accessed on 31 August 1990).
- Kadir, A.A.; Mohajerani, A.; Roddick, F.; Buckeridge, J. Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts. World Acad. Sci. Eng. Technol. 2009, 53, 1035–1040. [Google Scholar]
- Kadir, A.A.; Hinta, H.; Sarani, N.A. The utilization of coffee waste into fired clay brick. ARPN J. Eng. Appl. Sci. 2015, 10, 6289–6292. [Google Scholar]
- Victoria, A.N. Characterisation and performance evaluation of water works sludge as bricks material. Int. J. Eng. Appl. Sci. 2013, 3, 69–79. [Google Scholar]
- Monteiro, S.N.; Alexandre, J.; Margem, J.I.; Sanchez, R.; Vieira, C.M.F. Incorporation of sludge waste from water treatment plant into red ceramic. Constr. Build. Mater. 2008, 22, 1281–1287. [Google Scholar] [CrossRef]
- Cusido, J.A.; Cremades, L.V. Environmental effects of using clay bricks produced with sewage sludge: Leachability and toxicity studies. Waste Manag. 2012, 32, 1202–1208. [Google Scholar] [CrossRef] [Green Version]
- BS EN 772-11, Methods of Test for Masonry Units Part 11: Determination of Water Absorption of Aggregate Concrete, Manufactured Stone and Natural Action and the Initial Rate of Water Absorption of Clay Masonry Units; BSI British Standards Institution: London, UK, 2011; pp. 1–12.
- BS 12 3921, B.S.I British Standards Institution. British Standard Specification for Clay Bricks; BSI British Standards Institution: London, UK, 1985.
- US EPA. Method 1312: Synthetic Precipitation Leaching Procedure (SPLP). In Test Methods for Evaluating Solid Waste: Physical/Chemical Methods; SW-846: Washington, WA, USA, 1994. [Google Scholar]
- Goel, G.; Kalamdhad, A.S. An Investigation on use of paper mill sludge in brick manufacturing. Constr. Build. Mater. 2017, 148, 334–343. [Google Scholar] [CrossRef]
- Ukwatta, A.; Mohajerani, A. Effect of organic content in biosolids on the properties of fired-clay bricks incorporated with biosolids. J. Mater. Civ. Eng. 2017, 29, 1–11. [Google Scholar] [CrossRef]
- Seynou, M.; Millogo, Y.; Ouedraogo, R.; Traore, K.; Tirlocq, J. Firing transformations and properties of tiles from clay from Burkina Faso. Appl. Clay Sci. 2011, 51, 499–502. [Google Scholar] [CrossRef]
- Tsozue, D.; Nzeugang, A.N.; Mache, J.R.; Loweh, S.; Fagel, N.; Nzeukou, A.; Richard, J.; Loweh, S.; Fagel, N. Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production. J. Build. Eng. 2017, 11, 17–24. [Google Scholar] [CrossRef]
- Smith, R.G.; Allal, M. Small Scale Brickmaking; International Labour Office: Geneve, Switzerland, 1984. [Google Scholar]
- Sarani, N.A.; Kadir, A.A.; Rahim, A.S.; Mohajerani, A. Properties and environmental impact of the mosaic sludge incorporated into fired clay bricks. Constr. Build. Mater. 2018, 183, 300–310. [Google Scholar] [CrossRef]
- Nwoye, C.I.; Obidiegwu, E.O.; Mbah, C.N. Production of bricks for building construction and predictability of its post-fired volume shrinkage based on apparent porosity and water absorption capacity. Res. Rev. J. Mater. Sci. 2014, 2, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Baskar, R.; Begum, K.M.M.S.; Sundaram, S. Characterization and reuse of textile effluent treatment plant waste sludge in clay bricks. J. Univ. Chem. Technol. Metall. 2006, 41, 473–478. [Google Scholar]
- BIA. Technical Notes 3A—Brick Masonry Material Properties. Tech. Notes Brick Constr. Available online: https://www.gobrick.com (accessed on December 1992).
- Karaman, S.; Ersahin, S.; Gunal, H. Firing temperature and firing time influence on mechanical and physical properties of clay bricks. J. Sci. Ind. Res. 2006, 65, 153–159. [Google Scholar]
- Weng, C.H.; Lin, D.F.; Chiang, P.C. Utilization of sludge as brick materials. Adv. Environ. Res. 2003, 7, 679–685. [Google Scholar] [CrossRef]
- Lin, K.L.; Huang, L.-S.; Shie, J.L.; Cheng, C.J.; Lee, C.H.; Chang, T.C. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks. Environ. Technol. 2013, 34, 15–24. [Google Scholar] [CrossRef]
- Ahmed, A.; Soliman, A.; Naggar, M.E.; Kamei, T. An assessment of geo-environmental properties for utilization of recycled gypsum in earthwork projects. Soils Found 2015, 55, 1139–1147. [Google Scholar] [CrossRef] [Green Version]
- Kizinievic, O.; Kizinievic, V.; Pundiene, I.; Molotokas, D. Eco-friendly fired clay brick manufactured with agricultural solid waste. Arch. Civ. Mech. Eng. 2018, 18, 1156–1165. [Google Scholar] [CrossRef]
- British Standard Institution. Specification for Masonry Units Part 1: Clay Masonry Units. London. BS EN 771:1. 2015. Available online: http://www.standardsuk.com/ (accessed on 31 October 2011).
- Ukwatta, A.; Mohajerani, A.; Eshtiaghi, N.; Setunge, S. Variation in physical and mechanical properties of fired-clay bricks incorporating ETP biosolids. J. Clean. Prod. 2016, 119, 76–85. [Google Scholar] [CrossRef]
- Kadir, A.A.; Sarani, N.A.; Zaman, N.N.; Abdullah, M.M.A.B. Feasibility study on utilization of palm fibre waste into fired clay brick. AIP Conf. Proc. 2017, 1835, 20–39. [Google Scholar]
- Krishnan, P.; Jewaratnam, J.; Jewaratnam, J. Recovery of water treatment residue into clay bricks. Chem. Eng. Trans. 2017, 56, 1837–1842. [Google Scholar]
- Kadir, A. A.; Sarani, N. A. Utilization of Palm Oil Fuel Ash in Brick Manufacturing for Lightweight Fired Clay Brick Production. Int. J. Sust. Constr. Eng. Technol. 2020, 11, 136–150. [Google Scholar]
- Kazmi, S.M.; Abbas, S.; Saleem, M.A.; Munir, M.J.; Khitab, A. Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes. Constr. Build. Mater. 2016, 120, 29–41. [Google Scholar] [CrossRef]
- Punmia, B.C.; Jain, A.K.; Jain, A.K. Basic Civil Engineering; Laxmi Publications Pvt Limited: Chennai, India, 2003. [Google Scholar]
- Lin, D.F.; Weng, C.H. Use of sewage sludge ash as brick material. J. Environ. Eng. 2001, 127. [Google Scholar] [CrossRef]
- Taha, Y.; Benzaazoua, M.; Hakkou, R.; Mansori, M. Natural clay substitution by calamine processing wastes to manufacture fired bricks. J. Clean. Prod. 2016, 135, 847–858. [Google Scholar] [CrossRef]
- Jahagirdar, S.S.; Shrihari, S.; Manu, B. Utilization of textile mill sludge in burnt clay bricks. J. Environ. Prot. 2013, 3, 6. [Google Scholar]
Sample | Gypsum Waste (%) | Clay Soil (%) | Gypsum Waste (kg) | Clay Soil (kg) | Total Mass (kg) | Water (mL) |
---|---|---|---|---|---|---|
Control brick | 0 | 100 | 0.00 | 2.80 | 2.80 | 475 |
Gypsum brick | 10 | 90 | 0.20 | 2.60 | 2.80 | 515 |
20 | 80 | 0.47 | 2.33 | 2.80 | 550 | |
30 | 70 | 0.81 | 1.99 | 2.80 | 585 | |
40 | 60 | 1.25 | 1.55 | 2.80 | 650 | |
50 | 50 | 1.88 | 0.92 | 2.80 | 695 |
No | Parameter | Concentration (wt%) | |
---|---|---|---|
Clay Soil | Gypsum Waste | ||
1 | CaO | 0.10 | 29.57 |
2 | SO3 | 0.27 | 29.56 |
3 | Al2O3 | 38.70 | 16.13 |
4 | SiO2 | 40.8 | 8.86 |
5 | MgO | 0.36 | 7.82 |
6 | Fe2O3 | 5.41 | 4.88 |
7 | Na2O | 0.47 | 2.39 |
8 | P2O5 | - | 0.39 |
9 | MnO | - | 0.15 |
10 | K2O | 0.22 | 0.11 |
11 | Cl | - | 418.00 mg/kg |
12 | TiO2 | 1.05 | 344.00 mg/kg |
13 | ZnO | - | 111.00 mg/kg |
14 | Cr2O3 | - | 56.00 mg/kg |
Properties | Clay Soil |
---|---|
Specific gravity | 2.6 (clay soil), 2.5 (gypsum waste) |
Liquid limit (%) | 29.3 |
Plastic limit (%) | 16.2 |
Plasticity index (%) | 13.1 |
Degree of plasticity | Medium Plastic |
Type of soil | Silty clay or clayey silt |
Heavy Metals | Concentration (ppm) | USEPA | |||||
---|---|---|---|---|---|---|---|
Control Brick | Gypsum Brick | ||||||
10% | 20% | 30% | 40% | 50% | |||
Cu | 0.0137 | 0.0011 | 0.0029 | 0.0123 | 0.0168 | 0.0173 | 100 |
Fe | 4.3290 | 3.1350 | 3.6169 | 3.6689 | 3.8348 | 3.8585 | NA |
Al | 0.7670 | 0.8110 | 1.4706 | 1.6990 | 1.8863 | 1.9160 | NA |
Pb | 0.0271 | 0.0019 | 0.0025 | 0.0032 | 0.0041 | 0.0056 | 5 |
Zn | 0.3670 | 0.1270 | 0.1309 | 0.1415 | 0.1540 | 0.1705 | 500 |
Ni | 0.0024 | 0.0089 | 0.0092 | 0.0103 | 0.0166 | 0.0189 | 1.34 |
Ba | 0.2540 | 0.1040 | 0.3030 | 0.6520 | 0.7880 | 0.8810 | 100 |
Cr | 0.0113 | 0.0042 | 0.0058 | 0.0072 | 0.0114 | 0.0160 | 5 |
As | 0.0027 | 0.0065 | 0.0087 | 0.0095 | 0.0108 | 0.0174 | 5 |
V | 0.2060 | 0.2280 | 0.2930 | 0.3550 | 0.4260 | 0.6880 | NA |
Be | 0.0005 | 0.0002 | 0.0003 | 0.0034 | 0.0043 | 0.0056 | NA |
Se | 0.0027 | 0.0027 | 0.0035 | 0.0049 | 0.0057 | 0.0084 | NA |
Ag | 0.0027 | 0.0028 | 0.0022 | 0.0022 | 0.0028 | 0.0025 | NA |
Cd | 0.0011 | 0.0003 | 0.0002 | 0.0003 | 0.0007 | 0.0005 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, N.J.A.; Kadir, A.A.; Hashar, N.N.H.; Pietrusiewicz, P.; Nabiałek, M.; Wnuk, I.; Gucwa, M.; Palutkiewicz, P.; Hashim, A.A.; Sarani, N.A.; et al. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick. Materials 2021, 14, 2800. https://doi.org/10.3390/ma14112800
Hamid NJA, Kadir AA, Hashar NNH, Pietrusiewicz P, Nabiałek M, Wnuk I, Gucwa M, Palutkiewicz P, Hashim AA, Sarani NA, et al. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick. Materials. 2021; 14(11):2800. https://doi.org/10.3390/ma14112800
Chicago/Turabian StyleHamid, Nur Jannah Abdul, Aeslina Abdul Kadir, Nurul Nabila Huda Hashar, Paweł Pietrusiewicz, Marcin Nabiałek, Izabela Wnuk, Marcek Gucwa, Paweł Palutkiewicz, Azini Amiza Hashim, Noor Amira Sarani, and et al. 2021. "Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick" Materials 14, no. 11: 2800. https://doi.org/10.3390/ma14112800
APA StyleHamid, N. J. A., Kadir, A. A., Hashar, N. N. H., Pietrusiewicz, P., Nabiałek, M., Wnuk, I., Gucwa, M., Palutkiewicz, P., Hashim, A. A., Sarani, N. A., Nio, A. A., Noor, N. M., & Jez, B. (2021). Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick. Materials, 14(11), 2800. https://doi.org/10.3390/ma14112800