Magnetic and Transport Properties of New Dual-Phase High-Entropy Alloy FeRhIrPdPt
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, M.C.; Yeh, J.-W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Murty, B.S.; Yeh, J.-W.; Ranganathan, S.; Bhattacharjee, P.P. High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Musicό, B.L.; Gilbert, D.; Ward, T.Z.; Page, K.; George, E.; Yan, J.; Mandrus, D.; Keppens, V. The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Mater. 2020, 8, 040912. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834. [Google Scholar] [CrossRef]
- Sun, L.; Luo, Y.; Ren, X.; Gao, Z.; Du, T.; Wu, Z.; Wang, J. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability. Mater. Res. Lett. 2020, 8, 424–430. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater. Sci. Eng. A 2007, 454–455, 260–265. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Sun, L.; Cava, R.J. High-entropy alloy superconductors: Status, opportunities, and challenges. Phys. Rev. Mater. 2019, 3, 090301. [Google Scholar] [CrossRef] [Green Version]
- Ishizu, N.; Kitagawa, J. New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24. Res. Phys. 2019, 13, 102275. [Google Scholar] [CrossRef]
- Kitagawa, J.; Hamamoto, S.; Ishizu, N. Cutting Edge of High-Entropy Alloy Superconductors from the Perspective of Materials Research. Metals 2020, 10, 1078. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Liaw, P.K. Corrosion-resistant high-entropy alloys: A review. Metals 2017, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Todai, M.; Nagase, T.; Hori, T.; Matsugaki, A.; Sekita, A.; Nakano, T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017, 129, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Yao, Y.; Huang, Z.; Liu, Z.; Zhang, J.; Li, T.; Wang, G.; Shahbazian-Yassar, R.; Hu, L.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firstov, G.S.; Kosorukova, T.A.; Koval, Y.N.; Odnosum, V.V. High Entropy Shape Memory Alloys. Mater. Today Proc. 2015, 2, S499–S503. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Tong, X.; Zhang, H.; Wang, H.; Liu, X.J.; Ma, L.; Suo, H.L.; Lu, Z.P. Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 2017, 125, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Kao, Y.-F.; Chen, S.-K.; Chen, T.-J.; Chu, P.-C.; Yeh, J.-W.; Lin, S.-J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 2011, 509, 1607–1614. [Google Scholar] [CrossRef]
- Billington, D.; James, A.D.N.; Harris-Lee, E.I.; Lagos, D.A.; O’Neill, D.; Tsuda, N.; Toyoki, K.; Kotani, Y.; Nakamura, T.; Bei, H.; et al. Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys. Phys. Rev. B 2020, 102, 174405. [Google Scholar] [CrossRef]
- Schneeweiss, O.; Friák, M.; Dudová, M.; Holec, D.; Šob, M.; Kriegner, D.; Holý, V.; Beran, P.; George, E.P.; Neugebauer, J.; et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 2017, 96, 014437. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, Z.; Rao, Z.; Ikeda, Y.; Dutta, B.; Körmann, F.; Neugebauer, J.; Raabe, D. Role of magnetic ordering for the design of quinary TWIP-TRIP high entropy alloys. Phys. Rev. Mater. 2020, 4, 033601. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.; Dutta, B.; Körmann, F.; Lu, W.; Zhou, X.; Liu, C.; Kwiatkowski da Silva, A.; Wiedwald, U.; Spasova, M.; Farle, M.; et al. Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition. Adv. Funct. Mater. 2021, 31, 2007668. [Google Scholar] [CrossRef]
- Quintana-Nedelcos, A.; Leong, Z.; Morley, N.A. Study of dual-phase functionalisation of NiCoFeCr-Alx multicomponent alloys for the enhancement of magnetic properties and magneto-caloric effect. Mater. Today Energy 2021, 20, 100621. [Google Scholar] [CrossRef]
- Jung, C.; Kang, K.; Marshal, A.; Pradeep, K.G.; Seol, J.-B.; Lee, H.M.; Choi, P.-P. Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn high entropy alloys. Acta Mater. 2019, 171, 31–39. [Google Scholar] [CrossRef]
- Miura, H. A unit cell parameter refinement program on windows computer. J. Crystallogr. 2003, 45, 145–147. [Google Scholar]
- Nolze, G.; Kraus, W. PowderCell 2.0 for Windows. Powder Diffr. 1998, 13, 256–259. [Google Scholar]
- Yu, M.-H.; Lewis, L.H.; Moodenbaugh, A.R. Large magnetic entropy change in the metallic antiperovskite Mn3GaC. J. Appl. Phys. 2003, 93, 10128–10130. [Google Scholar] [CrossRef]
- Kitagawa, J.; Skaguchi, K. New room-temperature ferromagnet: B-added Pd0.75Mn0.25 alloy. J. Magn. Magn. Mater. 2018, 468, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Miyahara, J.; Shirakawa, N.; Setoguchi, Y.; Tsubota, M.; Kuroiwa, K.; Kitagawa, J. Hill Plot Focusing on Ce Compounds with High Magnetic Ordering Temperatures and Consequent Study of Ce2AuP3. J. Supercond. Nov. Magn. 2018, 31, 3559–3564. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, J.; Terada, H.; Shirakawa, N.; Tsubota, M.; Nose, A.; Tanaka, S. Composition effect in ferromagnetic properties of Tb3Co3Ga. Res. Phys. 2019, 15, 102591. [Google Scholar] [CrossRef]
- Tanaka, S.; Terada, H.; Shirakawa, N.; Tsubota, M.; Kitagawa, J. The Impact of the Composition Effect on Ferromagnetic Properties of Tb2Co2Ga. Metals 2019, 9, 1242. [Google Scholar] [CrossRef] [Green Version]
- Dhar, S.K.; Kulkarni, R.; Manfrinetti, P.; Fornasini, M.L.; Bernini, C. Structure and magnetic properties of RCu4Mn (R=La-Gd). Phys. Rev. B 2008, 77, 054424. [Google Scholar] [CrossRef]
- Marcano, N.; Gómez Sal, J.C.; Espeso, J.I.; De Teresa, J.M.; Algarabel, P.A.; Paulsen, C.; Iglesias, J.R. Mesoscopic Magnetic States in Metallic Alloys with Strong Electronic Correlations: A Percolative Scenario for CeNi1−xCux. Phys. Rev. Lett. 2007, 98, 166406. [Google Scholar] [CrossRef]
- Kroder, J.; Gooth, J.; Schnelle, W.; Fecher, G.H.; Felser, C. Observation of spin glass behavior in chiral Mn48Fe34Si18 with a β-Mn related structure. AIP Adv. 2019, 9, 055327. [Google Scholar] [CrossRef] [Green Version]
- Souletie, J.; Tholence, J.L. Critical slowing down in spin glasses and other glasses: Fulcher versus power law. Phys. Rev. B 1985, 32, 516–519. [Google Scholar] [CrossRef]
- Mukherjee, S.; Garg, A.; Gupta, R. Spin glass-like phase below ∼210 K in magnetoelectric gallium ferrite. Appl. Phys. Lett. 2012, 100, 112904. [Google Scholar] [CrossRef] [Green Version]
- Mydosh, J.A. Spin Glasses: An Experimental Introduction; Taylor & Francis: London, UK, 1993. [Google Scholar]
- Kitagawa, J.; Sakaguchi, K.; Hara, T.; Hirano, F.; Shirakawa, N.; Tsubota, M. Interstitial Atom Engineering in Magnetic Materials. Metals 2020, 10, 1644. [Google Scholar] [CrossRef]
- Jin, K.; Sales, B.C.; Stocks, G.M.; Samolyuk, G.D.; Daene, M.; Weber, W.J.; Zhang, Y.; Bei, H. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 2016, 6, 20159. [Google Scholar] [CrossRef] [PubMed]
- Troparevsky, M.C.; Morris, J.R.; Kent, P.R.C.; Lupini, A.R.; Stocks, G.M. Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys. Phys. Rev. X 2015, 5, 011041. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.; Liu, Y.; Liu, J.; Gong, P.; Prades-Rodel, S.; Blatter, A.; Scanley, B.E.; Broadbridge, C.C.; Schroers, J. Noble metal high entropy alloys. Scr. Mater. 2017, 126, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Yusenko, K.V.; Khandarkhaeva, S.; Bykov, M.; Fedotenko, T.; Hanfland, M.; Sukhikh, A.; Gromilov, S.A.; Dubrovinsky, L.S. Face-Centered Cubic Refractory Alloys Prepared from Single-Source Precursors. Materials 2020, 13, 1418. [Google Scholar] [CrossRef] [Green Version]
- Yusenko, K.V.; Riva, S.; Carvalho, P.A.; Yusenko, M.V.; Arnaboldi, S.; Sukhikh, A.S.; Hanfland, M.; Gromilov, S.A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, A.O.; Trofimov, E.A. Toward expanding the realm of high entropy materials to platinum group metals: A review. J. Alloys Compd. 2021, 851, 156838. [Google Scholar] [CrossRef]
Sample | Composition | Lattice Parameter (Å) |
---|---|---|
FeRh4 | Fe19.2(8)Rh80.8(8) | 3.782(1) |
FeIr4 | Fe18.5(6)Ir81.5(6) | 3.807(1) |
FePd4 | Fe19.3(9)Pd80.7(9) | 3.858(1) |
FePt4 | Fe19.2(6)Pt80.8(6) | 3.871(2) |
FeIrRhPtPd | main: Fe15.8(5)Rh24.5(5)Ir32.6(1)Pd10.7(6)Pt16.4(6) minor: Fe23.7(7)Rh14.0(8)Ir5.4(9)Pd32.5(9)Pt24.4(6) | 3.834(1) |
Sample | Magnetism | Magnetic Ordering Temperature (K) | μeff (μB/Fe) | ΘCW (K) | ρ (RT) (μΩcm) |
---|---|---|---|---|---|
FeRh4 | SG | Tf = 59 | 5.74 | −700 | 39.0 |
FeIr4 | SG | Tf = 23, 69 | 5.71 | −890 | 21.2 |
FePd4 | FM | TC = 393 | 5.44 | 409 | 59.5 |
FePt4 | FM | TC = 177, 317 | 4.11 | 272 | 107 |
FeRhIrPdPt | SG +FM corr. | Tf = 90 | 3.40 | 308 | 70.8 |
Model | τ0 (s) | Ea (K) | TSG (K) | zv |
---|---|---|---|---|
Vogel–Fulcher law | 4.8 × 10−14 | 192 | 93 | - |
Critical scaling approach | 5.1 × 10−14 | - | 90 | 6.3 |
Fe | Rh | Ir | Pd | Pt | |
---|---|---|---|---|---|
Fe | 0 | −57 | −63 | −116 | −244 |
Rh | −57 | 0 | −21 | 37 | −24 |
Ir | −63 | −21 | 0 | 40 | 11 |
Pd | −116 | 37 | 40 | 0 | −36 |
Pt | −244 | −24 | 11 | −36 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, K.; Ishizu, N.; Nishizaki, T.; Kitagawa, J. Magnetic and Transport Properties of New Dual-Phase High-Entropy Alloy FeRhIrPdPt. Materials 2021, 14, 2877. https://doi.org/10.3390/ma14112877
Baba K, Ishizu N, Nishizaki T, Kitagawa J. Magnetic and Transport Properties of New Dual-Phase High-Entropy Alloy FeRhIrPdPt. Materials. 2021; 14(11):2877. https://doi.org/10.3390/ma14112877
Chicago/Turabian StyleBaba, Kohei, Naoki Ishizu, Terukazu Nishizaki, and Jiro Kitagawa. 2021. "Magnetic and Transport Properties of New Dual-Phase High-Entropy Alloy FeRhIrPdPt" Materials 14, no. 11: 2877. https://doi.org/10.3390/ma14112877
APA StyleBaba, K., Ishizu, N., Nishizaki, T., & Kitagawa, J. (2021). Magnetic and Transport Properties of New Dual-Phase High-Entropy Alloy FeRhIrPdPt. Materials, 14(11), 2877. https://doi.org/10.3390/ma14112877