Crack Growth Simulation of Functionally Graded Materials Based on Improved Bond-Based Peridynamic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bond-Based Peridynamic Basic Theory
2.2. Definition of Bond Break and Damage
2.3. Improved Bond-Based Peridynamics Model for FGM Analysis
3. Model Checking
3.1. Simulating the Crack Propagation in a Plexiglass Sheet
3.1.1. Program Verification
3.1.2. The Effect of the Influence Function on the Calculation Accuracy
3.1.3. The Influence of the Neighborhood Range on Calculation Accuracy
3.1.4. The Effect of the Particle Spacing on the Calculation Accuracy
3.2. Simulation of Crack Propagation in FGM Beam under a Four-Point Bending Load
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, C. Discussion: “the crack problem for bonded nonhomogeneous materials under antiplane shear loading” (erdogan, f., 1985, asme j. Appl. Mech., 52, pp. 823–828). J. Appl. Mech. 1986, 3, 729. [Google Scholar] [CrossRef] [Green Version]
- Delale, F.; Erdogan, F. The crack problem for a nonhomogeneous plane. J. Appl. Mech. 1983, 3, 609–614. [Google Scholar] [CrossRef]
- Jin, Z.; Noda, N. Crack-tip singular fields in nonhomogeneous materials. J. Appl. Mech. 1994, 3, 738–740. [Google Scholar] [CrossRef]
- Marur, P.R.; Tippur, H.V. Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids Struct. 2000, 38, 5353–5370. [Google Scholar] [CrossRef]
- Kawasaki, A.; Watanabe, R. Thermal fracture behavior of metal/ceramic functionally graded materials. Eng. Fract. Mech. 2002, 14–16, 1713–1728. [Google Scholar] [CrossRef]
- Nishioka, T.; Tokudome, H.; Kinoshita, M. Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on delaunay automatic mesh generation. Int. J. Solids Struct. 2001, 30, 5273–5301. [Google Scholar] [CrossRef] [Green Version]
- Fabbrocino, F.; Funari, M.F.; Greco, F.; Lonetti, P.; Luciano, R.; Penna, R. Dynamic crack growth based on moving mesh method. Compos. Part B Eng. 2019, 174, 107053. [Google Scholar] [CrossRef]
- Dirik, H.; Yalinkaya, T. Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM. Int. J. Fatigue 2018, 114, S440411598. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef] [Green Version]
- Ha, Y.D.; Bobaru, F. Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 2010, 1, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Ha, Y.D.; Lee, J.; Hong, J.W. Fracturing patterns of rock-like materials in compression captured with peridynamics. Eng. Fract. Mech. 2015, 144, 176–193. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, G.; Wang, Y.; Bobaru, F. A peridynamic model for dynamic fracture in functionally graded materials—sciencedirect. Compos. Struct. 2015, 133, 529–546. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Q.; Zhang, L.; Liu, L.; Lai, X. Peridynamics model with surface correction near insulated cracks for transient heat conduction in functionally graded materials. Materials 2020, 6, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silling, S.A.; Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 2005, 83, 1526–1535. [Google Scholar] [CrossRef]
- Zhenghong, H.; Shouchun, D.; Haibo, L.; Chong, Y. Experimental study and numerical simulation of crack propagation process and intersection mode under tensile load. Chin. J. Rock Mech. Eng. 2019, S1, 2712–2723. [Google Scholar]
- Dan, H.; Lu, G.; Wang, C.; Qiao, P. An extended peridynamic approach for deformation and fracture analysis. Eng. Fract. Mech. 2015, 141, 196–211. [Google Scholar]
- Rousseau, C.E.; Tippur, H.V. Compositionally graded materials with cracks normal to the elastic gradient. Acta Mater. 2000, 16, 4021–4033. [Google Scholar] [CrossRef]
Material Parameter | Plexiglass |
---|---|
Elastic modulus E (GPa) | 2.633 |
Density ρ (kg/m3) | 1200 |
Fracture toughness KIC (MPa·m1/2) | 2.2 |
Material Parameter | Epoxy Resin | Glass |
---|---|---|
Elastic modulus E (GPa) | 3 | 8.6 |
Density ρ (kg/m3) | 1200 | 1850 |
Fracture toughness KIC (MPa·m1/2) | 1.2 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, L.; Liu, Q.; Liu, L. Crack Growth Simulation of Functionally Graded Materials Based on Improved Bond-Based Peridynamic Model. Materials 2021, 14, 3032. https://doi.org/10.3390/ma14113032
Min L, Liu Q, Liu L. Crack Growth Simulation of Functionally Graded Materials Based on Improved Bond-Based Peridynamic Model. Materials. 2021; 14(11):3032. https://doi.org/10.3390/ma14113032
Chicago/Turabian StyleMin, Liyi, Qiwen Liu, and Lisheng Liu. 2021. "Crack Growth Simulation of Functionally Graded Materials Based on Improved Bond-Based Peridynamic Model" Materials 14, no. 11: 3032. https://doi.org/10.3390/ma14113032
APA StyleMin, L., Liu, Q., & Liu, L. (2021). Crack Growth Simulation of Functionally Graded Materials Based on Improved Bond-Based Peridynamic Model. Materials, 14(11), 3032. https://doi.org/10.3390/ma14113032