Monitoring Carbon in Electron and Ion Beam Deposition within FIB-SEM
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Understanding Electron Beam Deposition by Analysing Spatial Variations
3.2. Understanding Electron Beam Deposition by Analysing Spatio-Temporal Variations
3.3. Understanding Carbon Modification by Xe-Ion Beam Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oatley, C.W. The early history of the scanning electron microscope. J. Appl. Phys. 1982, 7532, Rl–R13. [Google Scholar] [CrossRef]
- Newbury, D. Developments in instrumentation for microanalysis in low- voltage scanning electron microscopy. In Biological Low-Voltage Scanning Electron Microscopy; Schatten, H., Pawley, J., Eds.; Springer: New York, NY, USA, 2008; pp. 263–304. [Google Scholar]
- Pawley, J.B. LVSEM for biology. In Biological Low-Voltage Scanning Electron Microscopy; Schatten, H., Pawley, J., Eds.; Springer: New York, NY, USA, 2006; pp. 27–106. [Google Scholar]
- Manoccio, M.; Esposito, M.; Passaseo, A.; Cuscunà, M.; Tasco, V. Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures. Micromachines 2021, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Postek, M.T.; Vladár, A.E.; Purushotham, K.P. Does your SEM really tell the truth? Part 2 Scanning 2014, 36, 347–355. [Google Scholar] [CrossRef]
- Jepson, M.A.E. The effect of oxidation and carbon contamination on SEM dopant contrast. J. Phys. Conf. Ser. 2010, 241, 012078. [Google Scholar] [CrossRef]
- Dycka, O.; Kim, S.; Kalinin, S.V.; Jesse, S. Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. J. Vac. Sci. Technol. B 2017, 36, 1. [Google Scholar] [CrossRef]
- Herbig, M.; Kumar, A. Removal of hydrocarbon contamination and oxide films from atom probe specimens. Microsc. Res. Tech. 2021, 84, 291–297. [Google Scholar] [CrossRef]
- Glenn, A.M. Investigation into the Influence of Carbon Contamination on the Corrosion Behavior of Aluminum Microelectrodes and AA2024-T3. J. Electrochem. Soc. 2013, 160, C119. [Google Scholar] [CrossRef]
- Vane, R. Cable. Using a Residual Gas Analyzer to Monitor Plasma Cleaning of SEM Chambers and Specimens. Microsc. Microanal. 2018, 24, 1152–1153. [Google Scholar] [CrossRef] [Green Version]
- Barbara Armbruster, B.; Diller, S.; Grande, J.; Vane, R. Visualizing Evactron® Turbo PlasmaTM Cleaning in nanoflight® Movies. Microsc. Microanal. 2019, 25, 540–541. [Google Scholar] [CrossRef] [Green Version]
- Fleck, R.A.; Humbel, B.M.; Diller, S.A. Synoptic View on Microstructure: Multi-Detector Colour Imaging, nanoflight®. In Biological Field Emission Scanning Electron Microscopy; Fleck, R.A., Humbel, B.M., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Seidel, F.; Richard, O.; Bender, H.; Vandervorst, W. Protecting copper TEM specimens against corrosion via e-beam induced carbon deposition. Eur. Microsc. Congr. 2016, 620–621. [Google Scholar]
- Ricci, E.; Cazzaniga, F.; Testai, S. TEM sample preparation of a SEM cross section using electron beam induced deposition of carbon. Microelectron. Reliab. 2015, 55, 2126–2130. [Google Scholar] [CrossRef]
- Xu, Z.; Fu, Y.; Han, W.; Wei, D.; Jiao, H.; Gao, H. Recent developments in focused ion beam and its application in nanotechnology. Curr. Nanosci. 2016, 12, 696–711. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chen, S.; Dai, H.; Yang, Z.; Chen, Z.; Wang, Y.; Chen, Y.; Peng, W.; Shan, W.; Duan, H. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2021, 13, 1529–1565. [Google Scholar] [CrossRef] [PubMed]
- Reyntjens, S.; Puers, R. Focused ion beam induced deposition: Fabrication of three-dimensional microstructures and Young’s modulus of the deposited material. J. Micromech. Microeng. 2000, 10, 181. [Google Scholar] [CrossRef]
- Liang, Q.; Yan, C.; Meng, Y.; Lai, J.; Krasnicki, S.; Mao, H.; Hemley, R.J. Recent advances in high-growth rate single-crystal CVD diamond. Diam. Relat. Mater. 2009, 18, 698–703. [Google Scholar] [CrossRef]
- Utke, I.; Michler, J.; Winkler, R.; Plank, H. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. Micromachines 2020, 11, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Toloczko, M.B.; Kruska, K.; Schreiber, D.K.; Edwards, D.J.; Zhu, Z.; Zhang, J. Carbon Contamination During Ion Irradiation—Accurate Detection and Characterization of its Effect on Microstructure of Ferritic/Martensitic Steels. Sci. Rep. 2017, 7, 15813. [Google Scholar] [CrossRef] [Green Version]
- Rades, S.; Hodoroaba, V.D.; Salge, T.; Wirth, T.; Pilar Lobera, M.; Labrador, R.H.; Natte, K.; Behnke, T.; Grossa, T.; Unge, W.E.S. High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Adv. 2014, 4, 49577–49587. [Google Scholar] [CrossRef] [Green Version]
- Joy, D.C.; Prasad, M.S.; Meyer, H.M. Experimental secondary electron spectra under SEM conditions. J. Microsc. 2004, 215, 77–85. [Google Scholar] [CrossRef]
- Han, W.; Zheng, M.; Banerjee, A.; Luo, Y.Z.; Shen, L.; Khursheed, A. Quantitative material analysis using secondary electron energy spectromicroscopy. Sci. Rep. 2020, 10, 22144. [Google Scholar] [CrossRef]
- Kollath, V.R. Zur Energieverteilung der Sekundarelektronen. Messergebnisse und Diskussion. Ann. Physik. 1947, 436, 357–380. [Google Scholar] [CrossRef]
- Venables, J.A.; Batchelor, D.R.; Hanbucken, M.; Harland, C.J.; Jones, G.W. Surface Microscopy with Scanned Electron Beams. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1986, 318, 1541. [Google Scholar]
- Khursheed, A. Secondary Electron Energy Spectroscopy in the Scanning Electron Microscope; World Scientific Publishing Co Pte Ltd.: Singapore, 2020; ISBN 9789811227028. [Google Scholar]
- Farr, N.T.H.; Hamad, S.F.; Gray, E.; Magazzeni, C.M.; Longman, F.; Armstrong, D.E.J.; Foreman, J.P.; Claeyssens, F.; Green, N.H.; Rodenburg, C. Identifying and mapping chemical bonding within phenolic resin using secondary electron hyperspectral imaging. Polym. Chem. 2021, 12, 177–182. [Google Scholar] [CrossRef]
- Wan, Q.; Abrams, K.J.; Masters, R.C.; Talari, A.C.S.; Rehman, I.U.; Claeyssens, F.; Holland, C.; Rodenburg, C. Mapping nanostructural variations in silk by secondary electron hyperspectral imaging. Adv Mater. 2017, 29, 1703510. [Google Scholar] [CrossRef] [PubMed]
- Masters, R.C.; Stehling, N.A.; Abrams, K.J.; Kumar, V.; Azzolini, M.; Pugno, N.M.; Dapor, M.; Huber, A.; Schäfer, P.; Lidzey, D.G.; et al. Mapping Polymer Molecular Order in the SEM with Secondary Electron Hyperspectral Imaging. Adv. Sci. 2019, 6, 1801752. [Google Scholar] [CrossRef] [Green Version]
- Abrams, K.J.; Dapor, M.; Stehling, N.; Azzolini, M.; Kyle, S.J.; Schäfer, J.S.; Quade, A.; Mika, F.; Kratky, S.; Pokorna, Z.; et al. Making Sense of Complex Carbon and Metal/Carbon Systems by Secondary Electron Hyperspectral Imaging. Adv. Sci. 2019, 6, 1900719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Schmidt, W.L.; Schileo, G.; Masters, R.C.; Wong-Stringer, M.; Sinclair, D.C.; Reaney, I.M.; Lidzey, D.; Rodenburg, C. Nanoscale Mapping of Bromide Segregation on the Cross Sections of Complex Hybrid Perovskite Photovoltaic Films Using Secondary Electron Hyperspectral Imaging in a Scanning Electron Microscope. ACS Omega 2017, 2, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- Farr, N.; Gareth, M.; Rodenburg, C. Secondary Electron Spectral Acquisition iFAST Script (Automatic). The University of Sheffield. Software. 2021. Available online: https://doi.org/10.15131/shef.data.14535993.v1 (accessed on 4 May 2021).
- Long, C.J.; Bunker, D.; Li, X.; Karen, V.L.; Takeuchi, I. Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 2009, 80, 103902. [Google Scholar] [CrossRef] [Green Version]
- Rén, B.; Pueyo, L.; ben Zhu, G.; Debes, J.; Duchêne, G. Non-negative matrix factorization: Robust extraction of extended structures. Astrophys. J. 2018, 852. [Google Scholar] [CrossRef] [Green Version]
- Farr, N.; Pashneh-Tala, S.; Stehling, N.; Claeyssens, F.; Green, N.; Rodenburg, C. Characterizing Cross-Linking Within Polymeric Biomaterials in the SEM by Secondary Electron Hyperspectral Imaging. Macromol. Rapid Commun. 2020, 41, 1900484. [Google Scholar] [CrossRef]
- Mitchell, D.R.G. Contamination mitigation strategies for scanning transmission electron microscopy. Micron 2015, 73, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang., Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S.P.; et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 2013, 12, 925. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yu, T.; Kim, K.; Ni, Z.; You, Y.; Lim, S.; Shen, Z.; Wang, S.; Lin, J. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781. [Google Scholar] [CrossRef]
- Wu, S.; Yang, R.; Shi, D.; Zhang, G. Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale 2012, 4, 2005. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, A.; Näslund, L.Å.; Zhang, Z.; Nilsson, A. C–H bond formation at the graphite surface studied with core level spectroscopy. Surf. Sci. 2008, 602, 2575. [Google Scholar] [CrossRef]
- Farr, N.; Thanarak, J.; Schäfer, J.; Quade, A.; Claeyssens, F.; Green, N.; Rodenburg, C. Understanding Surface Modifications Induced via Argon Plasma Treatment through Secondary Electron Hyperspectral Imaging. Adv. Sci. 2021, 8, 2003762. [Google Scholar] [CrossRef] [PubMed]
- Bertel, E.; Stockbauer, R.; Madey, T.E. Electron Emission and ION desorption spectroscopy of clean and oxidized Ti (0001). Surf. Sci. 1984, 141, 355–387. [Google Scholar] [CrossRef]
- Halpin, J.E.; Webster, R.W.H.; Gardner, H.; Moody, M.P.; Bagot, P.A.J.; MacLaren, D.A. An in-situ approach for preparing atom probe tomography specimens by xenon plasma-focussed ion beam. Ultramicroscopy 2019, 202, 121–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farr, N.T.H.; Hughes, G.M.; Rodenburg, C. Monitoring Carbon in Electron and Ion Beam Deposition within FIB-SEM. Materials 2021, 14, 3034. https://doi.org/10.3390/ma14113034
Farr NTH, Hughes GM, Rodenburg C. Monitoring Carbon in Electron and Ion Beam Deposition within FIB-SEM. Materials. 2021; 14(11):3034. https://doi.org/10.3390/ma14113034
Chicago/Turabian StyleFarr, Nicholas T. H., Gareth M. Hughes, and Cornelia Rodenburg. 2021. "Monitoring Carbon in Electron and Ion Beam Deposition within FIB-SEM" Materials 14, no. 11: 3034. https://doi.org/10.3390/ma14113034
APA StyleFarr, N. T. H., Hughes, G. M., & Rodenburg, C. (2021). Monitoring Carbon in Electron and Ion Beam Deposition within FIB-SEM. Materials, 14(11), 3034. https://doi.org/10.3390/ma14113034