The One-Year In Vivo Comparison of Lithium Disilicate and Zirconium Dioxide Inlays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Tooth Preparation
2.3. Impressions
2.3.1. Zirconium Oxide (ZrO2) Group
2.3.2. Lithium Disilicate (LD) Group
2.4. Shade Selection, Occlusion Registration and Temporalization
2.5. Fabrication of Inlay
2.5.1. ZrO2 Group
2.5.2. LD Group
2.6. Clinical Try-In and Luting Procedure
2.7. Evaluation
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, P.E. The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century—The approach of the WHO Global Oral Health Programme. Community Dent. Oral Epidemiol. 2003, 31, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.; Ricketts, D. Inlays, Onlays and Veneers. In Advanced Operative Dentistry; Ricketts, D., Bartlett, D., Eds.; Churchill Livingstone: Edinburgh, UK, 2011; pp. 151–162. ISBN 9780702031267. [Google Scholar]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Amleh, B.; Lyons, K.; Swain, M. Clinical trials in zirconia: A systematic review. J. Oral Rehabil. 2010, 37, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Albakry, M.; Guazzato, M.; Swain, M.V. Biaxial flexural strength, elastic moduli, and x-ray diffraction characterization of three pressable all-ceramic materials. J. Prosthet. Dent. 2003, 89, 374–380. [Google Scholar] [CrossRef]
- Guazzato, M.; Albakry, M.; Ringer, S.P.; Swain, M.V. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent. Mater. 2004, 20, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six all-ceramic systems. Part I: Core materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [CrossRef]
- Heffernan, J.M.; Aquilino, A.S.; Diaz-Arnold, M.A.; Haselton, R.D.; Stanford, M.C.; Vargas, A.M. Relative translucency of six all-ceramic systems. Part II: Core and veneer materials. J. Prosthet. Dent. 2002, 88, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Suputtamongkol, K.; Tulapornchai, C.; Mamani, J.; Kamchatphai, W.; Thongpun, N. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns. J. Adv. Prosthodont. 2013, 5, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Mopkar, M.; Aras, M.A.; Chitre, V.; Mysore, A.; Coutinho, I.; Rajagopal, P. Factors affecting shade of all ceramic restorations. A literature review. J. Dent. Appl. 2018, 5, 417–424. [Google Scholar]
- Chritchlow, S. Ceramic materials have similar short term survival rates to other materials on posterior teeth. Evid. Based. Dent. 2012, 13, 49. [Google Scholar] [CrossRef]
- Beier, U.S.; Kapferer, I.; Dumfahrt, H. Clinical long-term evaluation and failure characteristics of 1,335 all-ceramic restorations. Int. J. Prosthodont. 2012, 25, 25. [Google Scholar]
- Stoll, R.; Cappel, I.; Jablonski-Momeni, A.; Pieper, K.; Stachniss, V. Survival of inlays and partial crowns made of IPS empress after a 10-year observation period and in relation to various treatment parameters. Oper. Dent. 2007, 32, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.A.; Vally, Z.I.; Sykes, L.M. The longevity of restorations—A literature review. South Afr. Dent. J. 2015, 70, 410–413. [Google Scholar]
- Qualtrough, A.J.; Wilson, N.H. A 3-year clinical evaluation of a porcelain inlay system. J. Dent. 1996, 24, 317–323. [Google Scholar] [CrossRef]
- Fabianelli, A.; Goracci, C.; Bertelli, E.; Davidson, C.L.; Ferrari, M. A clinical trial of Empress II porcelain inlays luted to vital teeth with a dual-curing adhesive system and a self-curing resin cement. J. Adhes. Dent. 2006, 8, 427–431. [Google Scholar] [PubMed]
- Nakhaei, M.; Ghanbarzadeh, J.; Alavi, S.; Amirinejad, S.; Rajatihaghi, H. The influence of dental shade guides and experience on the accuracy of shade matching. J. Contemp. Dent. Pr. 2016, 17, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Homsy, F.R.; Özcan, M.; Khoury, M.; Majzoub, Z.A. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J. Prosthet. Dent. 2018, 119, 783–790. [Google Scholar] [CrossRef]
- Guess, P.C.; Selz, C.F.; Steinhart, Y.-N.; Stampf, S.; Strub, J.R. Prospective clinical split-mouth study of pressed and CAD/CAM all-ceramic partial-coverage restorations: 7-year results. Int. J. Prosthodont. 2013, 26, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Alshiddi, I.F.; Richards, L.C. A comparison of conventional visual and spectrophotometric shade taking by trained and untrained dental students. Aust. Dent. J. 2015, 60, 176–181. [Google Scholar] [CrossRef]
- Liberato, W.F.; Barreto, I.C.; Costa, P.P.; de Almeida, C.C.; Pimentel, W.; Tiossi, R. A comparison between visual, intraoral scanner, and spectrophotometer shade matching: A clinical study. J. Prosthet. Dent. 2019, 121, 271–275. [Google Scholar] [CrossRef]
- Lapinska, B.; Rogowski, J.; Nowak, J.; Nissan, J.; Sokolowski, J.; Lukomska-Szymanska, M. Effect of surface cleaning regimen on glass ceramic bond strength. Molecules 2019, 24, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łapińska, B. Changes in dental ceramic surface structure and their influence on the bond strength to composite material (Zmiany struktury powierzchni ceramik dentystycznych oraz ich wpływ na wytrzymałość połączenia z materiałem kompozytowym). Przemysł Chem. 2017, 1, 124–128. [Google Scholar] [CrossRef]
- Łapińska, B. Lithium silicate ceramic surface properties after surface treatment (Właściwości ceramiki litowo-silikatowej po obróbce jej powierzchni). Przemysł Chem. 2017, 1, 145–149. [Google Scholar] [CrossRef]
- Łapińska, B.; Sokołowski, J.; Klimek, L.; Łukomska-Szymańska, M. Ocena zmian struktury i składu chemicznego ceramiki dwukrzemianu litu trawionej kwasem fluorowodorowym po zanieczyszczeniu śliną i zastosowaniu różnych metod oczyszczania powierzchni. (Surface Structure and Chemical Composition of Hydrofluoric Acid-Etched Lithium Disilicate Ceramic After Application of Different Cleaning Methods of Saliva Contamination Removal). Dent. Med Probl. 2015, 52, 71–77. [Google Scholar]
- Succaria, F.; Morgano, S.M. Prescribing a dental ceramic material: Zirconia vs lithium-disilicate. Saudi Dent. J. 2011, 23, 165–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanış, M.Ç.; Akay, C.; Karakış, D. Resin cementation of zirconia ceramics with different bonding agents. Biotechnol. Biotechnol. Equip. 2015, 29, 363–367. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Teuss, S.; Eichberger, M.; Roos, M.; Keul, C. Retention Strength of PMMA/UDMA-Based Crowns Bonded to Dentin: Impact of Different Coupling Agents for Pretreatment. Materials 2015, 8, 7486–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, J.; Chu, F.C.S.; Chow, T.W. Effect of surface treatment on shear bond strength of zirconia to human dentin. J. Prosthodont. 2011, 20, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Wat, P.; Cheung, G.S. Incidence of post-operative sensitivity following indirect porcelain onlay restorations: Preliminary results. Asian J. Aesthetic Dent. 1995, 3, 3–7. [Google Scholar]
- Christensen, G.J. Why use resin cements? J. Am. Dent. Assoc. 2010, 141, 204–206. [Google Scholar] [CrossRef]
- Costa, T.; Rezende, M.; Sakamoto, A.; Bittencourt, B.; Dalzochio, P.; Loguercio, A.D.; Reis, A. Influence of adhesive type and placement technique on postoperative sensitivity in posterior composite restorations. Oper. Dent. 2017, 42, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Hiraishi, N.; Breschi, L.; Prati, C.; Ferrari, M.; Tagami, J.; King, N. Technique sensitivity associated with air-drying of HEMA-free, single-bottle, one-step self-etch adhesives. Dent. Mater. 2007, 23, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.M.D.; Januário, A.B.D.N.; de Araújo, A.M.M.; Piva, A.M.D.O.D.; Özcan, M.; Bottino, M.A.; Souza, R.O.A. Effect of primer-cement systems with different functional phosphate monomers on the adhesion of zirconia to dentin. J. Mech. Behav. Biomed. Mater. 2018, 88, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Roman-Rodriguez, J.; Roig-Vanaclocha, A.; Fons, A.; Granell-Ruiz, M.; Sola-Ruiz, M.; Amigó, V.; Busquets-Mataix, D.; Vicente-Escuder, A. In vitro experimental study of bonding between aluminium oxide ceramics and resin cements. Med. Oral Patol. Oral. Cir. Bucal. 2009, 15, e95–e100. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, srep45563. [Google Scholar] [CrossRef] [Green Version]
- Perdigão, J.; Loguercio, A.D. Universal or multi-mode adhesives: Why and how? J. Adhes. Dent. 2014, 16, 193–194. [Google Scholar] [CrossRef]
- Mounajjed, R.; Layton, D.; Azar, B. The marginal fit of E.max Press and E.max CAD lithium disilicate restorations: A critical review. Dent. Mater. J. 2016, 35, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.; Gaur, A.; Kumar, V.; Chauhan, M. To Evaluate and compare postcementation sensitivity under class II composite inlays with three different luting cements: An in vivo study. J. Int. Oral Health 2017, 9, 165–173. [Google Scholar] [CrossRef]
- Tanaka, R.; Fujishima, A.; Shibata, Y.; Manabe, A.; Miyazaki, T. Cooperation of phosphate monomer and silica modification on zirconia. J. Dent. Res. 2008, 87, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Al Hamad, K.Q.; Al Quran, F.A.; AlJalam, S.A.; Baba, N.Z. Comparison of the accuracy of fit of metal, zirconia, and lithium disilicate crowns made from different manufacturing techniques. J. Prosthodont. 2018, 28, 497–503. [Google Scholar] [CrossRef]
- Almalki, A.D.; Al-Rafee, M.A. Evaluation of presence of proximal contacts on recently inserted posterior crowns in different health sectors in Riyadh City, Saudi Arabia. J. Fam. Med. Prim. Care 2019, 8, 3549–3553. [Google Scholar] [CrossRef] [PubMed]
- Kohorst, P.; Junghanns, J.; Dittmer, M.P.; Borchers, L.; Stiesch, M. Different CAD/CAM-processing routes for zirconia restorations: Influence on fitting accuracy. Clin. Oral Investig. 2010, 15, 527–536. [Google Scholar] [CrossRef]
- Wittneben, J.; Gavric, J.; Belser, U.; Bornstein, M.; Joda, T.; Chappuis, V.; Sailer, I.; Brägger, U. Esthetic and clinical performance of implant-supported all-ceramic crowns made with prefabricated or CAD/CAM Zirconia abutments: A Randomized, multicenter clinical trial. J. Dent. Res. 2017, 96, 163–170. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Spagnuolo, G.; Gherlone, E.; Sorrentino, R. Fourteen-year evaluation of posterior zirconia-based three-unit fixed dental prostheses. J. Dent. 2020, 101, 103419. [Google Scholar] [CrossRef]
- Abou-Steit, S.; Elguindy, J.; Zaki, A. Evaluation of patient satisfaction and shade matching of Vita Suprinity versus lithium disilicate (E-max) ceramic crowns in the esthetic zone: A randomized controlled clinical trial. F1000Research 2019, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Brandt, S.; Winter, A.; Lauer, H.-C.; Kollmar, F.; Portscher-Kim, S.-J.; Romanos, G.E. IPS e.max for all-ceramic restorations: Clinical survival and success rates of full-coverage crowns and fixed partial dentures. Materials 2019, 12, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, T.A.; Sherif, R.M. fracture resistance of monolithic glass-ceramics versus bilayered zirconia-based restorations. J. Prosthodont. 2017, 28, e259–e264. [Google Scholar] [CrossRef] [Green Version]
- Rosentritt, M.; Schumann, F.; Krifka, S.; Preis, V. Influence of zirconia and lithium disilicate tooth- or implant-supported crowns on wear of antagonistic and adjacent teeth. J. Adv. Prosthodont. 2020, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aladağ, A.; Oğuz, D.; Çömlekoğlu, M.E.; Akan, E. In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment. J. Adv. Prosthodont. 2019, 11, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.P.; Neves, A.C.C.; Vitti, R.; Amaral, M.; Henrique, M.N.; Silva-Concílio, L.R. Influence of different ceramic systems on marginal misfit. Eur. J. Prosthodont. Restor. Dent. 2017, 25, 127–130. [Google Scholar]
- Saridag, S.; Sevimay, M.; Pekkan, G. Fracture resistance of teeth restored with all-ceramic inlays and onlays: An in vitro study. Oper. Dent. 2013, 38, 626–634. [Google Scholar] [CrossRef]
- Seidel, A.; Belli, R.; Breidebach, N.; Wichmann, M.; Matta, R.E. The occlusal wear of ceramic fixed dental prostheses: 3-Year results in a randomized controlled clinical trial with split-mouth design. J. Dent. 2020, 103, 103500. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, F.; D’Arcangelo, C.; Malíšková, N.; Vanini, L.; Vadini, M. Wear properties of different additive restorative materials used for onlay/overlay posterior restorations. Oper. Dent. 2020, 45, E156–E166. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.M.; Shariati, B.; Gazzaz, A.Z.; Sayed, M.E.; Carvalho, R.M. Fit of tooth-supported zirconia single crowns—A systematic review of the literature. Clin. Exp. Dent. Res. 2020, 6, 700–716. [Google Scholar] [CrossRef]
- El-Dessouky, R.; Salama, M.; Shakal, M.; Korsel, A. Marginal adaptation of CAD/CAM zirconia-based crown during fabrication steps. Tanta Dent. J. 2015, 12, 81–88. [Google Scholar] [CrossRef]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abad-Coronel, C.; Naranjo, B.; Valdiviezo, P. Adhesive Systems used in indirect restorations cementation: Review of the literature. Dent. J. 2019, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Guess, P.C.; A Zavanelli, R.; A Silva, N.R.F.; A Bonfante, E.; Coelho, P.G.; Thompson, V.P. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: Comparison of failure modes and reliability after fatigue. Int. J. Prosthodont. 2010, 23, 434–442. [Google Scholar] [PubMed]
- Luciano, M.; Francesca, Z.; Michela, S.; Tommaso, M.; Massimo, A. Lithium disilicate posterior overlays: Clinical and biomechanical features. Clin. Oral Investig. 2019, 24, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Toman, M.; Toksavul, S. Clinical evaluation of 121 lithium disilicate allceramic crowns up to 9 Years. Quintessence Int. 2015, 46, 189–197. [Google Scholar]
- Esquivel-Upshaw, J.F. Four-year clinical performance of a lithium disilicate-based core ceramic for posterior fixed partial dentures. Int. J. Prosthodont. 2008, 21, 155–160. [Google Scholar] [PubMed]
- Owitayakul, D.; Lertrid, W.; Anatamana, C.; Pittayachawan, P. The Comparison of the marginal gaps of zirconia framework luted with different types of phosphate based-resin cements. M. Dent. J. 2015, 35, 237–251. [Google Scholar]
- Miura, S.; Kasahara, S.; Kudo, M.; Okuyama, Y.; Izumida, A.; Yoda, M.; Egusa, H.; Sasaki, K. Clinical Chipping of Zirconia All-Ceramic Restorations. In Interface Oral Health Science; Springer Science and Business Media LLC.: Tokyo, Japan, 2015; pp. 317–323. [Google Scholar]
- Della Bona, A.; Kelly, J.R. The clinical success of all-ceramic restorations. J. Am. Dent. Assoc. 2008, 139, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Anusavice, K.J.; Kakar, K.; Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin. Oral Implant. Res. 2007, 18, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, A.; Shenoy, N. Dental ceramics: An update. J. Conserv. Dent. 2010, 13, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, M.; Göckler, F.; Rückbeil, M.; Weber, V.; Edelhoff, D.; Wolfart, S. Periodontal outcome and additional clinical quality criteria of lithium-disilicate restorations (Empress 2) after 14 years. Clin. Oral Investig. 2019, 23, 2153–2164. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Mondelli, R.; Navarro, M.F.L.; Francischone, C.; Rubo, J.; Santos, G. Clinical evaluation of ceramic inlays and onlays fabricated with two systems: Five-year follow-up. Oper. Dent. 2013, 38, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Vichi, A.; Louca, C.; Corciolani, G.; Ferrari, M. Color related to ceramic and zirconia restorations: A review. Dent. Mater. 2011, 27, 97–108. [Google Scholar] [CrossRef]
- Habib, S.R.; Al Shiddi, I.F. Comparison of shade of ceramic with three different zirconia substructures using spectrophotometer. J. Contemp. Dent. Pr. 2015, 16, 135–140. [Google Scholar] [CrossRef]
- Kimmich, M.; Stappert, C.F. Intraoral treatment of veneering porcelain chipping of fixed dental restorations. J. Am. Dent. Assoc. 2013, 144, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Ayash, G.M.; Osman, E.; Segaan, L.G.; Rayyan, M.M. Visual Versus Instrumental Shade Selection Techniques. Egypt. Dent. J. 2011, 61, 6. [Google Scholar]
- Demir, N.; Ozturk, A.N.; Malkoc, M.A. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur. J. Dent. 2014, 8, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Anadioti, E.; Aquilino, S.A.; Gratton, D.G.; Holloway, J.A.; Denry, I.L.; Thomas, G.W.; Qian, F. Internal fit of pressed and computer-aided design/computer aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet. Dent. 2015, 113, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Son, H.-J.; Kim, W.-C.; Jun, S.-H.; Kim, Y.-S.; Ju, S.-W.; Ahn, J.-S. Influence of dentin porcelain thickness on layered all-ceramic restoration color. J. Dent. 2010, 38, e71–e77. [Google Scholar] [CrossRef]
- Judeh, A.; Al-Wahadni, A. A comparison between conventional visual and spectrophotometric methods for shade selection. Quintessence Int. 2009, 40, 69–79. [Google Scholar]
- Patankar, A.H.; Miyajiwala, J.S.; Kheur, M.G.; Lakha, T.A. Comparison of photographic and conventional methods for tooth shade selection: A clinical evaluation. J. Indian Prosthodont. Soc. 2017, 17, 273–281. [Google Scholar] [CrossRef]
- Kim, J.-H.; Chae, S.-Y.; Lee, Y.; Han, G.-J.; Cho, B.-H. Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic. Oper. Dent. 2015, 40, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Rodolpho, P.A.D.R.; Cenci, M.; Donassollo, T.A.; Loguércio, A.D.; Demarco, F.F. A clinical evaluation of posterior composite restorations: 17-year findings. J. Dent. 2006, 34, 427–435. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
class II cavities in permanent teeth | severe systematic diseases and allergies |
isthmus size of the treated cavities at least half of the | severe salivary gland dysfunction |
intercuspal distance | severe periodontal problems |
no clinical signs and symptoms of pulp and periapical pathology | poor plaque control |
at least one neighbouring tooth | parafunctional habits like bruxism or clenching |
in occlusion to antagonistic teeth | restricted mouth opening |
good oral hygiene | history of orthodontic treatment |
over 18 years old | preparations extending below the gingiva margin and close to the pulp |
willing to participate in the study | initial defects, i.e., discoloured pits and fissures and caries restricted to enamel only |
Tooth Type | Type of Class II Cavity | LD | ZrO2 |
---|---|---|---|
Premolars | MO | 4 | 5 |
OD | 3 | 2 | |
Molars | MO | 4 | 4 |
OD | 4 | 4 | |
-Total no of teeth | 30 | 15 | 15 |
Assessment Criteria | Parameters |
---|---|
(1) Occlusal and interproximal contact | (A) Normal |
(B) Heavy | |
(C) Light (D) Open | |
(2) Anatomic form | (A) Continuous with existing anatomy (B) Discontinuous with existing anatomy, but not sufficient to expose dentine/base exposed (C) Dentine/base exposed |
(3) Marginal adaptation | (A) Closely adapted no evidence of a catch or crevice at any point (B) Visible evidence of a crevice. Fine probe will not penetrate (C) Visible evidence of a crevice. Fine probe will penetrate (D) Evidence of a positive step when probe drawn from tooth to restoration |
(4) Surface roughness | (A) Smooth |
(B) Slightly pitted | |
(5) Colour Match | (A) Matches colour and translucency of adjacent tooth structure. (B) Mismatch in colour and translucency is within the acceptable range |
(6) Sensitivity | (A) None (B) Mild but bearable (C) Uncomfortable (D) Very painful data |
(7) Overall survival probability of restorations after one year | (A) In percentage |
Study Group | Survival Probability | |
---|---|---|
No. | % | |
LD | 15 | 100.0 |
ZrO2 | 14 | 93.0 |
Total | 29 | 96.0 |
Chi- square and p value | χ2 = 5.9032; p = 0.522 |
Follow-Up Periods | Occlusal and Proximal Contact | Group (χ2 = 4.612, p = 0.242) | |||||
---|---|---|---|---|---|---|---|
LD | ZrO2 | Total | |||||
No. | % | No. | % | No. | % | ||
2 weeks | Normal | 10 | 66.7 | 12 | 80.0 | 22 | 73.3 |
4 weeks | Heavy | 3 | 20.0 | 0 | 0 | 3 | 10.0 |
6 months | Light | 2 | 13.3 | 2 | 13.3 | 4 | 13.3 |
1 year | Open/Absent | 0 | 0 | 1 * | 6.7 | 1 | 3.3 |
Follow-Up Periods | Anatomic Form | Group (χ2 = 4.615, p = 0.032) | |||||
---|---|---|---|---|---|---|---|
LD | ZrO2 | Total | |||||
No. | % | No | % | No. | % | ||
2 weeks | Continuous with the existing anatomy | 15 | 100.0 | 11 | 73.3 | 26 | 86.7 |
4 weeks 6 months 1 year | Discontinuous with the existing anatomy but not sufficient enough to expose dentin/base | 0 | 0 | 4 * | 26.7 | 4 | 13.3 |
Follow-Up Periods | Marginal Adaptation | Group (χ2 = 1.043; p = 0.593) | |||||
---|---|---|---|---|---|---|---|
LD | ZrO2 | Total | |||||
No. | % | No | % | No. | % | ||
2 weeks 4 weeks | Closely adapted. No evidence of a catch or crevice at any point | 12 | 80.0 | 11.0 | 73.3 | 26.0 | 86.7 |
Visible evidence of a crevice. Fine probe will not penetrate | 3 | 20.0 | 3.0 | 20.0 | 6.0 | 20.0 | |
Visible evidence of a crevice. Fine probe will penetrate | 0 | 0 | 0 | 0 | 0 | 0 | |
Evidence of a positive step when probe drawn from tooth to restoration | 0 | 0 | 1.0 | 6.7 | 1.0 | 3.3 | |
6 months 1 year | Closely adapted. No evidence of a catch or crevice at any point | 12 | 80.0 | 10.0 | 66.7 | 22.0 | 73.3 |
Visible evidence of a crevice. Fine probe will not penetrate | 3 | 20.0 | 4.0 | 26.7 | 7.0 | 23.3 | |
Visible evidence of a crevice. Fine probe will penetrate | 0 | 0 | 0 | 0 | 0 | 0 | |
Evidence of a positive step when probe drawn from tooth to restoration | 0 | 0 | 1.0 * | 6.7 | 1 | 3.3 |
Follow-Up Periods | Surface Roughness | Group (χ2 =1.034; p = 0.309) | |||||
---|---|---|---|---|---|---|---|
LD | ZrO2 | Total | |||||
No. | % | No | % | No. | % | ||
2 weeks 4 weeks 6 months | Smooth | 15 | 100 | 14 | 93.3 | 29 | 96.7 |
Slightly pitted | 0 | 0 | 1 | 6.7 | 1 | 3.3 | |
Deeply pitted | 0 | 0 | 0 | 0 | 0 | 0 | |
Surface fractured | 0 | 0 | 0 | 0 | 0 | 0 | |
1 year | Smooth | 15 | 100 | 12 | 80 | 27 | 90 |
Slightly pitted | 0 | 0 | 1 * | 6.7 | 1 | 3.3 | |
Deeply pitted | 0 | 0 | 0 | 0 | 0 | 0 | |
Surface fractured | 0 | 0 | 2 | 13.3 | 2 | 6.7 |
Immediate Colour Match | Groups (χ2 = 17.368, p = 0.000) | |||||
---|---|---|---|---|---|---|
LD | ZrO2 | Total | ||||
No. | % | No. | % | No. | % | |
Matches colour and translucency of adjacent tooth structure | 15 | 100 | 4 | 26.7 | 19 | 63.3 |
Mismatch in colour and translucency | 0 | 0 | 11 | 73.3 | 11 | 36.7 |
Follow-Up | Sensitivity | Groups (χ2 = 3.33, p = 0.068) | |||||
---|---|---|---|---|---|---|---|
LD | ZrO2 | Total | |||||
No. | % | No. | % | No. | % | ||
2 weeks | None | 15 | 100 | 12 | 80 | 27 | 90 |
4 weeks | Mild but bearable | 0 | 0 | 3 * | 20 | 3 | 10 |
6 months | Uncomfortable | 0 | 0 | 0 | 0 | 0 | 0 |
1 year | Very painful | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behera, R.; Mishra, L.; Divakar, D.D.; Al-Kheraif, A.A.; Singh, N.R.; Lukomska-Szymanska, M. The One-Year In Vivo Comparison of Lithium Disilicate and Zirconium Dioxide Inlays. Materials 2021, 14, 3102. https://doi.org/10.3390/ma14113102
Behera R, Mishra L, Divakar DD, Al-Kheraif AA, Singh NR, Lukomska-Szymanska M. The One-Year In Vivo Comparison of Lithium Disilicate and Zirconium Dioxide Inlays. Materials. 2021; 14(11):3102. https://doi.org/10.3390/ma14113102
Chicago/Turabian StyleBehera, Rini, Lora Mishra, Darshan Devang Divakar, Abdulaziz A. Al-Kheraif, Naomi Ranjan Singh, and Monika Lukomska-Szymanska. 2021. "The One-Year In Vivo Comparison of Lithium Disilicate and Zirconium Dioxide Inlays" Materials 14, no. 11: 3102. https://doi.org/10.3390/ma14113102
APA StyleBehera, R., Mishra, L., Divakar, D. D., Al-Kheraif, A. A., Singh, N. R., & Lukomska-Szymanska, M. (2021). The One-Year In Vivo Comparison of Lithium Disilicate and Zirconium Dioxide Inlays. Materials, 14(11), 3102. https://doi.org/10.3390/ma14113102