Adaptation of Fracture Mechanics Methods for Quality Assessment of Tungsten Carbide Cutting Inserts
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
- (1)
- Mean static and dynamic fracture toughness of SM25T specimens is equal to 12.5 MPa·m1/2 and 24.5 MPa·m1/2, respectively.
- (2)
- The method used to determine fracture toughness of WC-based materials seems to be reliable because the obtained results are within the range of 7-25 MPa·m1/2 given in [16] as expected for hard metals.
- (3)
- Microscopic analysis of the fracture surface after impact test shows that during material failure some cracks propagate inside material. In addition, cleavage steps appear which are described as “river patterns” and characteristic for brittle fracture.
- (4)
- Topography analysis of the four sections selected on the fracture surface shows irregularity highness of 0–20 µm.
- (5)
- SEM analysis of the fracture surface shows material porosity which is caused probably by manufacturing technique (e.g., while sintering). Moreover, material porosity is not homogenous on the entire fracture surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toschi, R.; Barabaschi, P.; Campbell, D.; Elio, F.; Maisonnier, D.; Ward, D. How Far Is a Fusion Power Reactor from an Experimental Reactor. Fusion Eng. Des. 2001, 56–57, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Wurster, S.; Baluc, N.; Battabyal, M.; Crosby, T.; Du, J.; García-Rosales, C.; Hasegawa, A.; Hoffmann, A.; Kimura, A.; Kurishita, H.; et al. Recent Progress in R&D on Tungsten Alloys for Divertor Structural and Plasma Facing Materials. J. Nucl. Mater. 2013, 442, S181–S189. [Google Scholar] [CrossRef] [Green Version]
- Rupp, D.; Mönig, R.; Gruber, P.; Weygand, S.M. Fracture Toughness and Microstructural Characterization of Polycrystalline Rolled Tungsten. Int. J. Refract. Met. Hard Mater. 2010, 28, 669–673. [Google Scholar] [CrossRef]
- Babak, A.V. Effect of Recrystallization on the Fracture Toughness of Tungsten. Sov. Powder Metall. Met. Ceram. 1983, 22, 316–318. [Google Scholar] [CrossRef]
- Nogami, S.; Watanabe, S.; Reiser, J.; Rieth, M.; Sickinger, S.; Hasegawa, A. A Review of Impact Properties of Tungsten Materials. Fusion Eng. Des. 2018, 135, 196–203. [Google Scholar] [CrossRef]
- Nogami, S.; Guan, W.; Fukuda, M.; Hasegawa, A. Effect of Microstructural Anisotropy on the Mechanical Properties of K-Doped Tungsten Rods for Plasma Facing Components. Fusion Eng. Des. 2016, 109–111, 1549–1553. [Google Scholar] [CrossRef]
- Farrell, K.; Schaffhauser, A.C.; Stiegler, J.O. Recrystallization, Grain Growth and the Ductile-Brittle Transition in Tungsten Sheet. J. Less Common Met. 1967, 13, 141–155. [Google Scholar] [CrossRef]
- Kuczmaszewski, J.; Zaleski, K.; Matuszak, J.; Pałka, T.; Mądry, J. Studies on the Effect of Mill Microstructure upon Tool Life during Slot Milling of Ti6Al4V Alloy Parts. Eksploat. Niezawodn. 2017, 19, 590–596. [Google Scholar] [CrossRef]
- Muthuswamy, P.; Dinakaran, D. Evaluation of Mechanical and Metallurgical Properties of Cryo-Treated Tungsten Carbide with 25% Cobalt. Mater. Today Proc. 2020, 43, 3463–3469. [Google Scholar] [CrossRef]
- Lv, Z.; Wu, Y.; Dang, J.; Liu, D.; Hu, L.; Du, K.; Sun, H. Effect of Yttrium on Morphologies and Size of Tungsten Carbide Particles Prepared through CO Reduction. J. Mater. Res. Technol. 2020, 9, 10166–10174. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Fuh, J.Y.H.; Yu, P.C.; Lu, L.; Wu, C.C. Effects of AGG on Fracture Toughness of Tungsten Carbide. Mater. Sci. Eng. A 2007, 445–446, 587–592. [Google Scholar] [CrossRef]
- Parihar, R.S.; Gangi Setti, S.; Sahu, R.K. Effect of Sintering Parameters on Microstructure and Mechanical Properties of Self-Lubricating Functionally Graded Cemented Tungsten Carbide. J. Manuf. Process. 2019, 45, 498–508. [Google Scholar] [CrossRef]
- Cai, X.; Zhong, L.; Xu, Y.; Li, X.; Liu, M. Microstructure and Fracture Toughness of a WC-Fe Cemented Carbide Layer Produced by a Diffusion-Controlled Reaction. Surf. Coat. Technol. 2019, 357, 784–793. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, B.; Jia, C.; Gao, F.; Yu, Y.; Chu, K.; Zhang, M.; Zhao, X. Influence of Carbide Grain Size and Crystal Characteristics on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-CoCr Coatings. Int. J. Refract. Met. Hard Mater. 2017, 69, 138–152. [Google Scholar] [CrossRef]
- Lamberson, L.E. Impact Fatigue Behavior of WC-Co Cemented Carbides: Microstructure and Stress Wave Interactions; Reports: ND10; Petroleum Research Fund: Washington, DC, USA, 2017; Available online: https://acswebcontent.acs.org/prfar/2017/Paper14914.html (accessed on 14 February 2021).
- Roebuck, B.; Gee, M.; Bennett, E.G.; Morrell, R. Mechanical Tests for Hardmetals. Measurement Good Practice Guide No. 20; National Physical Laboratory: Teddington, UK, 2009. [Google Scholar]
- Ingelstrom, N.; Nordberg, H. The Fracture Toughness of Cemented Tungsten Carbides. Eng. Fract. Mech. 1974, 6, 597–607. [Google Scholar] [CrossRef]
- Chermant, J.L.; Deschanvres, A.; Iost, A. Fracture Mechanics, Statistical Analysis and Fractography of Carbides and Metal Carbides Composites. Concepts, Flaws, and Fractography. In Fracture Mechanics of Ceramics; Bradt, R.C., Hasselman, D.P.H., Lange, F.F., Eds.; Springer: Boston, MA, USA, 1974; pp. 347–366. ISBN 978-1-4684-2991-6. [Google Scholar]
- Yen, S.S. Fracture Toughness of Cemented Carbides. Master of Science Thesis, Lehigh University, Bethlehem, PA, USA, 1971. [Google Scholar]
- Murray, M.J.; Perrott, C.M. Fracture toughness of sintered carbide measured by the double torsion technique. In Advances in Hard Material Tool Technology, Proceedings of the 1976 International Conference on Hard Material Tool Technology, Carnegie Mellon University, Pittsburgh, PA, USA, 22–24 June 1976; Komanduri, R., Ed.; Carnegie Press: Pittsburgh, PA, USA, 1976. [Google Scholar]
- Pickens, J.R.; Gurland, J. The Fracture Toughness of WC-Co Alloys Measured on Single-Edge Notched Beam Specimens Precracked by Electron Discharge Machining. Mater. Sci. Eng. 1978, 33, 135–142. [Google Scholar] [CrossRef]
- Józwik, J.; Kuric, I. Analysis of Milling Process of Sintered Carbide Workpieces. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 12–15 April 2019; pp. 91–97. [Google Scholar]
- Józwik, J.; Pytka, J.; Legutko, S.; Tofil, A. Surface Morphology Analysis After Sintered Carbon Milling Process. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Torino, Italy, 19–21 June 2019; pp. 381–386. [Google Scholar]
- Józwik, J.; Legutko, S.; Pytka, J.; Michalowska, J. Measurement and Analysis of Vibration in the Milling Process of Sintered Carbide Workpiece. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Torino, Italy, 19–21 June 2019; pp. 376–380. [Google Scholar]
- Dziedzic, K.; Zubrzycka-Wróbel, J.; Józwik, J.; Barszcz, M.; Siwak, P.; Chałas, R. RESEARCH ON TRIBOLOGICAL PROPERTIES OF DENTAL COMPOSITE MATERIALS. Adv. Sci. Technol. Res. J. 2016, 10, 144–149. [Google Scholar] [CrossRef]
- Kłonica, M.; Kuczmaszewski, J.; Samborski, S. Effect of a Notch on Impact Resistance of the Epidian 57/Z1 Epoxy Material after “Thermal Shock”. Solid State Phenom. 2016, 240, 161–167. [Google Scholar] [CrossRef]
- Skoczylas, J.; Samborski, S.; Kłonica, M. Experimental Study on Static and Dynamic Fracture Toughness of Cured Epoxy Resins. Adv. Sci. Technol. Res. J. 2019, 13, 122–127. [Google Scholar] [CrossRef]
- Skoczylas, J.; Samborski, S.; Kłonica, M. A Multilateral Study on the FRP Composite’s Matrix Strength and Damage Growth Resistance. Compos. Struct. 2021, 263, 113752. [Google Scholar] [CrossRef]
- International Organization for Standardization. Classification and Application of Hard Cutting Materials for Metal Removal with Defined Cutting Edges—Designation of the Main Groups and Groups of Application; ISO 513; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Samborski, S.; Sadowski, T. Dynamic Fracture Toughness of Porous Ceramics. J. Am. Ceram. Soc. 2010, 93, 3607–3609. [Google Scholar] [CrossRef]
- International Organization for Standardization. Plastics—Determination of Charpy Impact Properties—Part 2: Instrumented Impact Test; ISO 179-2; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Fengchun, J.; Ruitang, L.; Xiaoxin, Z.; Vecchio, K.S.; Rohatgi, A. Evaluation of Dynamic Fracture Toughness KId by Hopkinson Pressure Bar Loaded Instrumented Charpy Impact Test. Eng. Fract. Mech. 2004, 71, 279–287. [Google Scholar] [CrossRef]
- Marsavina, L.; Sadowski, T. Dynamic Fracture Toughness of Polyurethane Foam. Polym. Test. 2008, 27, 941–944. [Google Scholar] [CrossRef]
- Sadowski, T.; Boniecki, M.; Librant, Z.; Ruiz, C. Fracture Process of Monolythic Polycrystalline Ceramics (Al2O3 and MgO) Under Quasi-Static and Dynamic Loading. In Brittle Matrix Composites 5, Proceedings of the Fifth International Symposium on Brittle Matrix Composites (BMC5), Warsaw, Poland, 13–15 October 1997; Brandt, A.M., Li, V.C., Marshall, I.H., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 1997; pp. 567–578. [Google Scholar]
- Sadowski, T.; Samborski, S. On the different behaviour of porous ceramic polycrystalline materials under tension and compression stress state. In Computational Fluid and Solid Mechanics 2003, Proceedings of the Second MIT Conference on Compurational Fluid and Solid Mechanics, Cambridge, MA, USA, 17–20 June 2003; Bathe, K.J., Ed.; Elsevier Science Ltd.: Oxford, UK, 2003; pp. 615–618. ISBN 978-0-08-044046-0. [Google Scholar]
- Sadowski, T.; Samborski, S. Prediction of the Mechanical Behaviour of Porous Ceramics Using Mesomechanical Modelling. Comput. Mater. Sci. 2003, 28, 512–517. [Google Scholar] [CrossRef]
- Sadowski, T.; Samborski, S. Development of Damage State in Porous Ceramics under Compression. Comput. Mater. Sci. 2008, 43, 75–81. [Google Scholar] [CrossRef]
- Sadowski, T.; Samborski, S.; Librant, Z. Damage Growth in Porous Ceramics. Key Eng. Mater. 2005, 290, 86–93. [Google Scholar] [CrossRef]
- Samborski, S.; Sadowski, T. A New Micromechanics Based Predictive Method for Porous Ceramics Behaviour Under Compression. In Brittle Matrix Composites 8, Proceedings of the Eight International Symposium on Brittle Matrix Composites (BMC8), Warsaw, Poland, 23–25 October 2006; Brandt, A.M., Li, V.C., Marshall, I.H., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp. 507–516. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samborski, S.; Józwik, J.; Skoczylas, J.; Kłonica, M. Adaptation of Fracture Mechanics Methods for Quality Assessment of Tungsten Carbide Cutting Inserts. Materials 2021, 14, 3441. https://doi.org/10.3390/ma14133441
Samborski S, Józwik J, Skoczylas J, Kłonica M. Adaptation of Fracture Mechanics Methods for Quality Assessment of Tungsten Carbide Cutting Inserts. Materials. 2021; 14(13):3441. https://doi.org/10.3390/ma14133441
Chicago/Turabian StyleSamborski, Sylwester, Jerzy Józwik, Jakub Skoczylas, and Mariusz Kłonica. 2021. "Adaptation of Fracture Mechanics Methods for Quality Assessment of Tungsten Carbide Cutting Inserts" Materials 14, no. 13: 3441. https://doi.org/10.3390/ma14133441
APA StyleSamborski, S., Józwik, J., Skoczylas, J., & Kłonica, M. (2021). Adaptation of Fracture Mechanics Methods for Quality Assessment of Tungsten Carbide Cutting Inserts. Materials, 14(13), 3441. https://doi.org/10.3390/ma14133441