Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis
Abstract
:1. Introduction
- First, a tomography of the interface was conducted of the two different states of the Ni/Al hybrid foam for comparison: as already mentioned above, one Al base foam had been chemically pre-treated prior to electroplating and one was coated without a pre-treatment. A tomography by FIB proved to be a powerful tool to reveal complex 3D microstructures and interface morphologies, even on the nanoscale, that are inaccessible in 2D [34,35,36].
- In a second step the evolution of the in-plane stress distribution perpendicular to the bending axis was measured in the Ni coating of individual struts by depth-sensitive X-ray diffraction (XRD) at EDDI beamline at the synchrotron storage ring BESSY II in Berlin. The special setup at the EDDI beamline allowed to achieve a complete diffraction stress analysis by sin2ψ-method with high depth-resolution applied inter alia for thin coating layers [37]. A specially adapted in situ three-point bending testing rig was used. The critical load needed for decohesion of the Ni coating, measured directly at the interface, was compared for the two pre-treatment states of the foam.
- In a third and concluding observation micro bending beams including the Ni/Al interface were cut with FIB. The interface was positioned to the maximum stressed volume during cantilever bending. The critical energy for interfacial crack growth was identified for the two states of pre-treatment.
2. Materials and Methods
2.1. Interface Manufacturing
2.2. Interface Morphology
2.3. Stress Distribution Analysis with Energy-Dispersive X-ray Diffraction
2.4. Microbeam Bending
3. Results
3.1. FIB Tomography
3.2. EDDI
- Shear stresses were negligible. Only shear stresses of less than 20 MPa were measured at all load steps. This indicated a good homogeneity of the stress fields.
- If the applied load was increased the in-plane stress perpendicular to the bending axis also increased. At a level of 400 MPa up to 580 MPa the further capacity of the coating to accommodate stress was suddenly reduced and resulted in a plateau for the untreated foams. This stress region exhibited a large scatter for the untreated foams (Figure 8a).
- The pre-treated foam struts also showed a slight decrease of the further capable stress near the interface, without a real plateau, the critical values scattered less and the average value of this critical stress was about 100 MPa higher for the pre-treated struts (Figure 8b).
3.3. Microbending Test
4. Discussion
4.1. Morphology and Expected Material Behaviour
4.2. Decohesion Stress Analysis
4.3. Fracture Energy
5. Conclusions
- an improved material-fit
- a snap button-like form-fit connection
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDDI | energy-dispersive diffraction |
FEM | finite element method |
FIB | focused ion beam |
MMM | macro-meso-micro |
SEM | scanning electron microscope |
XRD | X-ray diffraction |
AD | angular-dispersive |
Al | aluminium |
Cu | copper |
ED | energy-dispersive |
Ga | gallium |
Ni | nickel |
PU | polyurethane |
Pt | platinum |
pt | pre-treated |
ut | untreated |
Zn | zinc |
A | cross-sectional area |
critical crack length | |
lattice spacing of plane | |
E | elastic modulus |
critical energy | |
maximum force | |
maximum force normalized | |
J | J-integral |
K | stress intensity factor |
goniometer azimuth angle | |
goniometer polar angle | |
volume fraction of the pores | |
surface of Al | |
surface of Ni | |
surface of pores | |
shared surfaces of Al and Ni | |
shared surfaces of Al and pores | |
shared surfaces of Ni and pores | |
in-plane bending stress | |
in-plane bending shear stress | |
maximum mean in-plane bending stress | |
t | beam thickness |
mean information depth | |
incident beam angle (Bragg-Brentano goniometer) | |
w | beam width |
detector angle (Bragg-Brentano goniometer) |
References
- Fischer, S.F. Energy absorption efficiency of open-cell pure aluminum foams. Mater. Lett. 2016, 184, 208–210. [Google Scholar] [CrossRef]
- García-Moreno, F. Commercial applications of metal foams: Their properties and production. Materials 2016, 9, 85. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumaraswamidhas, L.A.; Das, S.; Kumaran, S.S. Characterization and analysis of compression load behaviour of aluminium alloy foam under the diverse strain rate. J. Alloys Compd. 2016, 656, 218–225. [Google Scholar] [CrossRef]
- Schaedler, T.A.; Carter, W.B. Architected cellular materials. Ann. Rev. Mater. Res. 2016, 46, 187–210. [Google Scholar] [CrossRef]
- Gancarczyk, A.; Sindera, K.; Iwaniszyn, M.; Piątek, M.; Macek, W.; Jodłowski, P.J.; Wroński, S.; Sitarz, M.; Łojewska, J.; Kołodziej, A. Metal foams as novel catalyst support in environmental processes. Catalysts 2019, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Antenucci, A.; Guarino, S.; Tagliaferri, V.; Ucciardello, N. Improvement of the mechanical and the rmal characteristics of open cell aluminum foams by the electrodeposition of Cu. Mater. Des. 2014, 59, 124–129. [Google Scholar] [CrossRef]
- Sun, Y.; Burgueño, R.; Wang, W.; Lee, I. Modeling and simulation of the quasi-static compressive behavior of Al/Cu hybrid open-cell foams. Int. J. Solids Struct. 2015, 54, 135–146. [Google Scholar] [CrossRef]
- Wang, W.; Burgueño, R.; Hong, J.W.; Lee, I. Nano-deposition on 3-D open-cell aluminum foam materials for improved energy absorption capacity. Mater. Sci. Eng. A 2013, 572, 75–82. [Google Scholar] [CrossRef]
- Liu, J.; Si, F.; Zhu, X.; Liu, Y.; Zhang, J.; Liu, Y.; Zhang, C. Compressive properties of open-cell Al hybrid foams at different temperatures. Materials 2017, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Bouwhuis, B.A.; McCrea, J.L.; Palumbo, G.; Hibbard, G.D. Mechanical properties of hybrid nanocrystalline metal foams. Acta Mater. 2009, 57, 4046–4053. [Google Scholar] [CrossRef]
- Devivier, C.; Tagliaferri, V.; Trovalusci, F.; Ucciardello, N. Mechanical characterization of open cell aluminium foams reinforced by nickel electro-deposition. Mater. Des. 2015, 86, 272–278. [Google Scholar] [CrossRef]
- Jung, A.; Chen, Z.; Schmauch, J.; Motz, C.; Diebels, S. Micromechanical characterisation of Ni/Al hybrid foams by nano- and microindentation coupled with EBSD. Acta Mater. 2016, 102, 38–48. [Google Scholar] [CrossRef]
- Jung, A.; Natter, H.; Diebels, S.; Lach, E.; Hempelmann, R. Nanonickel coated aluminum foam for enhanced impact energy absorption. Adv. Eng. Mater. 2011, 13, 23–28. [Google Scholar] [CrossRef]
- Degischer, H.P.; Kriszt, B. Handbook of Cellular Metals; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Nemat-Nasser, S.; Hori, M. Micromechanics: Overall Properties of Heterogeneous Materials; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mukherjee, M.; García-Moreno, F.; Jiménez, C.; Rack, A.; Banhart, J. Microporosity in aluminium foams. Acta Mater. 2017, 131, 156–168. [Google Scholar] [CrossRef]
- Jung, A.; Diebels, S. Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams. Mater. Des. 2017, 131, 252–264. [Google Scholar] [CrossRef]
- Kader, M.A.; Islam, M.A.; Saadatfar, M.; Hazell, P.J.; Brown, A.D.; Ahmed, S.; Escobedo, J.P. Macro and micro collapse mechanisms of closed-cell aluminium foams during quasi-static compression. Mater. Des. 2017, 118, 11–21. [Google Scholar] [CrossRef]
- Kaya, A.C.; Zaslansky, P.; Nikolaus, A.; Fleck, C. Tensile failure observations in sintered steel foam struts revealed by sub-micron contrast-enhanced microtomography. Mater. Des. 2016, 105, 190–200. [Google Scholar] [CrossRef]
- Bele, E.; Bouwhuis, B.A.; Hibbard, G.D. Failure mechanisms in metal/metal hybrid nanocrystalline microtruss materials. Acta Mater. 2009, 57, 5927–5935. [Google Scholar] [CrossRef]
- Sun, Y.; Burgueño, R.; Wang, W.; Lee, I. Effect of annealing on the mechanical properties of nano-copper reinforced open-cell aluminum foams. Mater. Sci. Eng. A 2014, 613, 340–351. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kang, Y.; Lee, Y.C.; Park, Y.; Lee, W. Influence of partially debonded interface on elasticity of syntactic foam: A numerical study. Materials 2017, 10, 911. [Google Scholar] [CrossRef] [Green Version]
- Eisenhut, L.; Schaefer, F.; Gruenewald, P.; Weiter, L.; Marx, M.; Motz, C. Effect of a dislocation pile-up at the neutral axis on trans-crystalline crack growth for micro-bending fatigue. Int. J. Fatigue 2017, 94, 131–139. [Google Scholar] [CrossRef]
- Motz, C.; Schöberl, T.; Pippan, R. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 2005, 53, 4269–4279. [Google Scholar] [CrossRef]
- Volkert, C.A.; Lilleodden, E.T. Size effects in the deformation of sub-micron Au columns. Philos. Mag. 2006, 86, 5567–5579. [Google Scholar] [CrossRef]
- Nix, W.D.; Greer, J.R.; Feng, G.; Lilleodden, E.T. Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 2007, 515, 3152–3157. [Google Scholar] [CrossRef]
- Kapp, M.W.; Kremmer, T.; Motz, C.; Yang, B.; Pippan, R. Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments. Acta Mater. 2017, 125, 351–358. [Google Scholar] [CrossRef]
- Ast, J.; Merle, B.; Durst, K.; Göken, M. Fracture toughness evaluation of NiAl single crystals by microcantilevers - a new continuous J-integral method. J. Mater. Res. 2016, 31, 3786–3794. [Google Scholar] [CrossRef] [Green Version]
- Dehm, G.; Jaya, B.N.; Raghavan, R.; Kirchlechner, C. Overview on micro-and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Mater. 2018, 142, 248–282. [Google Scholar] [CrossRef]
- Pippan, R.; Pfeifenberger, M.; Wurster, S.; Kapp, M.; Hartl, S.; Kiener, D. Fracture mechanics of microsamples. In Proceedings of the Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia, 1–6 October 2017. [Google Scholar]
- Gruenewald, P.; Schaefer, F.; Thielen, M.; Marx, M.; Motz, C. Small scale fracture mechanics of ductile materials: Advantage of fatigue precracks and comparison of J-integral evaluations. Materialia 2018, 4, 104–108. [Google Scholar] [CrossRef]
- Kupka, D.; Lilleodden, E.T. Mechanical testing of solid-solid interfaces at the microscale. Exp. Mech. 2012, 52, 649–658. [Google Scholar] [CrossRef]
- Kupka, D.; Huber, N.; Lilleodden, E.T. A combined experimental-numerical approach for elasto-plastic fracture of individual grain boundaries. J. Mech. Phys. Solids 2014, 64, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Velichko, A.; Wiegmann, A.; Mücklich, F. Estimation of the effective conductivities of complex cast iron microstructures using FIB-tomographic analysis. Acta Mater. 2009, 57, 5023–5035. [Google Scholar] [CrossRef]
- Holzer, L.; Muench, B.; Wegmann, M.; Gasser, P.; Flatt, R.J. FIB-nanotomography of particulate systems—Part I: Particle shape and topology of interfaces. J. Am. Ceram. Soc. 2006, 89, 2577–2585. [Google Scholar] [CrossRef]
- Lasagni, F.; Lasagni, A.; Holzapfel, C.; Mücklich, F.; Degischer, H.P. Three dimensional characterization of unmodified and Sr-modified Al-Si eutectics by FIB and FIB EDX tomography. Adv. Eng. Mater. 2006, 8, 719–723. [Google Scholar] [CrossRef]
- Meixner, M.; Klaus, M.; Genzel, C.; Reimers, W. Residual stress analysis of diamond-coated WC-Co cutting tools: Separation of film and substrate information by grazing X-ray diffraction. J. Appl. Cryst. 2013, 46, 1323–1330. [Google Scholar] [CrossRef]
- Sutygina, A.; Betke, U.; Scheffler, M. Open-cell aluminum foams by the sponge replication technique. Materials 2019, 12, 3840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, A.; Koblischka, M.R.; Lach, E.; Diebels, S.; Natter, H. Hybrid Metal Foams: Mechanical Testing and Determination of Mass Flow Limitations During Electroplating. Int. J. Mater. Sci. 2012, 2, 97–107. [Google Scholar]
- Meixner, M.; Klaus, M.; Genzel, C. Sin2ψ-based residual stress gradient analysis by energy-dispersive synchrotron diffraction constrained by small gauge volumes. II. Experimental implementation. J. Appl. Cryst. 2013, 46, 619–627. [Google Scholar] [CrossRef]
- Genzel, C.; Denks, I.A.; Gibmeier, J.; Klaus, M.; Wagener, G. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl. Instrum. Methods Phys. Res. A 2007, 578, 23–33. [Google Scholar] [CrossRef]
- Meixner, M.; Klaus, M.; Genzel, C. Sin2ψ-based residual stress gradient analysis by energy-dispersive synchrotron diffraction constrained by small gauge volumes. I. Theoretical concept. J. Appl. Cryst. 2013, 46, 610–618. [Google Scholar] [CrossRef]
- Kolitsch, S.; Kolednik, O. Stress intensity factors for micro-and macroscale bimaterial cantilevers and bend specimens. Thin Solid Films 2021, 732, 138750. [Google Scholar] [CrossRef]
- Luksch, J.; Jung, A.; Pauly, C.; Motz, C.; Mücklich, F.; Schaefer, F. Effect of Pretreatment on Interface Stability and Morphology of Ni/Al Hybrid Foams by in situ Microcantilever Fracture Experiment. Procedia Struct. Integr. 2019, 17, 206–213. [Google Scholar] [CrossRef]
Specimen | ut | pt |
---|---|---|
/μm2 | 128.60 | 579.99 |
/μm2 | 133.71 | 467.40 |
/μm2 | 11.35 | 216.48 |
/% | 0.03 | 2.75 |
/μm2 | 125.48 | 415.45 |
/μm2 | 3.12 | 164.53 |
/μm2 | 8.23 | 51.95 |
Specimen | ut1 | ut2 | ut3 | pt1 | pt2 | pt3 | ut | pt |
---|---|---|---|---|---|---|---|---|
pre-treatment | - | - | - | + | + | + | - | + |
experiment | synchrotron EDDI | microbending | ||||||
/N | 17.6 | 15.0 | 11.3 | 53.1 | 25.2 | 26.4 | - | |
/MPa | 616.0 | 483.1 | 648.6 | 753.0 | 689.9 | 672.0 | - |
Specimen | ut | pt |
---|---|---|
t/μm | 9.57 | 7.29 |
w/μm | 7.60 | 7.19 |
A/μm2 | 55.40 | 68.88 |
/mN | 1.81 | 2.39 |
/mN μm2 | 0.0327 | 0.0348 |
/mN μm | 0.0954 | 0.1807 |
/μm | 0.2 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luksch, J.; Jung, A.; Pauly, C.; Derr, R.; Gruenewald, P.; Laub, M.; Klaus, M.; Genzel, C.; Motz, C.; Mücklich, F.; et al. Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis. Materials 2021, 14, 3473. https://doi.org/10.3390/ma14133473
Luksch J, Jung A, Pauly C, Derr R, Gruenewald P, Laub M, Klaus M, Genzel C, Motz C, Mücklich F, et al. Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis. Materials. 2021; 14(13):3473. https://doi.org/10.3390/ma14133473
Chicago/Turabian StyleLuksch, Jutta, Anne Jung, Christoph Pauly, Ralf Derr, Patrick Gruenewald, Marc Laub, Manuela Klaus, Christoph Genzel, Christian Motz, Frank Mücklich, and et al. 2021. "Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis" Materials 14, no. 13: 3473. https://doi.org/10.3390/ma14133473
APA StyleLuksch, J., Jung, A., Pauly, C., Derr, R., Gruenewald, P., Laub, M., Klaus, M., Genzel, C., Motz, C., Mücklich, F., & Schaefer, F. (2021). Ni/Al-Hybrid Cellular Foams: An Interface Study by Combination of 3D-Phase Morphology Imaging, Microbeam Fracture Mechanics and In Situ Synchrotron Stress Analysis. Materials, 14(13), 3473. https://doi.org/10.3390/ma14133473