RETRACTED: Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb2+ and MB in Wastewater
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Materials
2.2. Preparation Method
2.3. Characterization of PAA/LS/BC
2.4. Adsorption of Pb2+ and MB by PAA/LS/BC
2.5. Adsorption Experiments in Single System
2.6. Selective Adsorption
2.7. Reusability Test of PAA/LS/BC
3. Results and Discussion
3.1. Characterization
3.1.1. SEM
3.1.2. FTIR
3.1.3. TGA (Thermogravimetric Analysis)
3.2. Effect of Solution pH and the Amount of PAA/LS/BC on Adsorption
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Selective Adsorption
3.6. Reusability of PAA/LS/BC
3.7. Comparison with Other Removal Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.J.; Chen, R.; Fan, L.; Cui, L.L.; Zhang, Y.J.; Cheng, J.J.; Wu, X.L.; Zeng, W.M.; Tian, Q.H.; Shen, L. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Sep. Purif. Technol. 2021, 268, 118689. [Google Scholar] [CrossRef]
- Du, J.K.; Bao, J.G.; Liu, Y.; Ling, H.B.; Zheng, H.; Kim, S.H.; Dionysiou, D.D. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. J. Hazard. Mater. 2016, 320, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Y.; Liu, X.C.; Xiang, Y.J.; Wang, P.; Zhang, J.C.; Zhang, F.F.; Wei, J.H.; Luo, L.; Lei, M.; Tang, L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017, 245, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Li, Z.K. Heavy metals removal using hydrogel-supported nanosized hydrous ferric oxide: Synthesis, characterization, and mechanism. Sci. Total. Environ. 2017, 580, 776–786. [Google Scholar] [CrossRef]
- Gao, C.G.; Zhang, X.L.; Yuan, Y.; Lei, Y.; Gao, J.T.; Zhao, S.J.; He, C.Y.; Deng, L.C. Removal of hexavalent chromium ions by core-shell sand/Mg-layer double hydroxides (LDHs) in constructed rapid infiltration system. Ecotox. Environ. Safe 2018, 166, 285–293. [Google Scholar] [CrossRef]
- Huang, W.; Xu, J.Z.; Lu, D.K.; Deng, J.J.; Shi, G.Y.; Zhou, T.S. Rational design of magnetic infinite coordination polymer core-shell nanoparticles as recyclable adsorbents for selective removal of anionic dyes from colored wastewater. Appl. Surf. Sci. 2018, 462, 453–465. [Google Scholar] [CrossRef]
- Ji, A.L.; Wang, F.; Luo, W.J.; Yang, R.H.; Chen, J.Y.; Cai, T.J. Lead poisoning in China: A nightmare from industrialisation. Lancet 2011, 377, 1474–1476. [Google Scholar] [CrossRef]
- Yu, S.J.; Liu, Y.; Ai, Y.J.; Wang, X.X.; Zhang, R.; Chen, Z.S.; Chen, Z.; Zhao, G.X.; Wang, X.K. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environ. Pollut. 2018, 242, 1–11. [Google Scholar] [CrossRef]
- Choudhary, M.; Peter, C.N.; Shukla, S.K.; Govender, P.P.; Joshi, G.M.; Wang, R. Environmental Issues: A Challenge for Wastewater Treatment. In Green Materials for Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–12. [Google Scholar]
- Lai, K.C.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Gan, S.Y. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms. J. Environ. Sci. 2019, 79, 174–199. [Google Scholar] [CrossRef]
- Sun, D.T.; Peng, L.; Reeder, W.S.; Moosavi, S.M.; Tiana, D.; Britt, D.K.; Oveisi, E.; Queen, W.L. Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite. ACS Central. Sci. 2018, 4, 349–356. [Google Scholar] [CrossRef]
- Dou, J.B.; Gan, D.F.; Huang, Q.; Liu, M.Y.; Chen, J.Y.; Deng, F.J.; Zhu, X.L.; Wen, Y.Q.; Zhang, X.Y.; Wei, Y. Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int. J. Biol. Macromol. 2019, 136, 476–485. [Google Scholar] [CrossRef]
- Shi, X.F.; Wang, C.; Ma, Y.Y.; Liu, H.; Wu, S.D.; Shao, Q.; He, Z.F.; Guo, L.; Ding, T.; Guo, Z.H. Template-free microwave-assisted synthesis of FeTi coordination complex yolk-shell microspheres for superior catalytic removal of arsenic and chemical degradation of methylene blue from polluted water. Powder Technol. 2019, 356, 726–734. [Google Scholar] [CrossRef]
- Su, J.F.; Bai, Y.H.; Huang, T.L.; Wei, L.; Gao, C.Y.; Wen, Q. Multifunctional modified polyvinyl alcohol: A powerful biomaterial for enhancing bioreactor performance in nitrate, Mn(II) and Cd(II) removal. Water Res. 2020, 168, 115152. [Google Scholar] [CrossRef]
- Fang, L.; Li, L.; Qu, Z.; Xu, H.M.; Xu, J.F.; Yan, N.Q. A novel method for the sequential removal and separation of multiple heavy metals from wastewater. Int. J. Biol. Macromol. 2018, 342, 617–624. [Google Scholar] [CrossRef]
- Sun, Y.C.; Liu, X.N.; Lv, X.T.; Wang, T.T.; Xue, B.L. Synthesis of novel lignosulfonate-modified graphene hydrogel for ultrahigh adsorption capacity of Cr(VI) from wastewater. J. Clean. Prod. 2019, 138, 188–197. [Google Scholar]
- Mu, R.H.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Adsorption of Cu (II)and Co (II) from aqueous solution using lignosulfonate/chitosan adsorbent. Int. J. Biol. Macromol. 2020, 163, 120–127. [Google Scholar] [CrossRef]
- Liu, X.D.; Tian, J.F.; Li, Y.Y.; Sun, N.F.; Mi, S.; Xie, Y.; Chen, Z.Y. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J. Hazard. Mater. 2019, 373, 397–407. [Google Scholar] [CrossRef]
- Lin, P.Y.; Wu, H.M.; Hsieh, S.L.; Li, J.S.; Dong, C.D.; Chen, C.W.; Hsieh, S.C. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere 2021, 254, 126903. [Google Scholar] [CrossRef]
- Zhou, Q.W.; Liao, B.H.; Lin, L.N.; Qiu, W.W.; Song, Z.G. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites. Sci. Total. Environ. 2018, 615, 115–122. [Google Scholar] [CrossRef]
- Zhang, L.X.; Tang, S.Y.; He, F.X.; Liu, Y.; Mao, W.; Guan, Y.T. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 2019, 378, 122215. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, X.H.; Qin, D.M.; Da, W.X.; Hou, B.X.; Hao, C.; Wu, J.B. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J. Hazard. Mater. 2019, 369, 50–61. [Google Scholar] [CrossRef]
- Wan, X.Y.; Zhan, Y.Q.; Long, Z.H.; Zeng, G.Y.; He, Y. Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem. Eng. J. 2017, 330, 491–504. [Google Scholar] [CrossRef]
- Dong, L.Y.; Liang, J.S.; Li, Y.; Hunang, S.Q.; Wei, Y.N.; Bai, X.; Jin, Z.H.; Zhang, M.; Qu, J.J. Effect of coexisting ions on Cr(VI) adsorption onto surfactant modified Auricularia auricula spent substrate in aqueous solution. Ecotox. Environ. Safe 2018, 166, 390–400. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coordin. Chem. Rev. 2018, 356, 147–164. [Google Scholar] [CrossRef]
- Huang, Q.; Zhao, J.; Liu, M.Y.; Chen, J.Y.; Zhu, X.L.; Wu, T.; Tian, J.W.; Wen, Y.Q.; Zhang, X.Y.; Wei, Y. Preparation of polyethylene polyamine@tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. J. Taiwan. Inst. Chem. E 2018, 82, 92–101. [Google Scholar] [CrossRef]
- Guo, R.; Jiao, T.F.; Li, R.F.; Chen, Y.; Guo, W.C.; Zhang, L.X.; Zhou, J.X.; Zhang, Q.R.; Peng, Q.M. Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustain. Chem. Eng. 2018, 6, 1279–1288. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.H.; Han, T.T.; Hao, C.; Han, S.Q.; Fan, X.B. Synthesis of sodium lignosulfonate-guar gum composite hydrogel for the removal of Cu2+ and Co2+. Int. J. Biol. Macromol. 2021, 175, 459–472. [Google Scholar] [CrossRef]
- Ma, Y.L.; Lv, L.; Guo, Y.R.; Fu, Y.J.; Shao, Q.; Wu, T.T.; Guo, S.J.; Sun, K.; Guo, X.K.; Wujcik, E.K. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer 2017, 128, 12–23. [Google Scholar] [CrossRef]
- Gu, P.C.; Zhang, S.; Zhang, C.L.; Wang, X.X.; Khan, A.; Wen, T.; Hu, B.W.; Alsaedi, A.; Hayat, T.; Wang, X.K. Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(II). Dalton Trans. 2019, 48, 2100–2107. [Google Scholar] [CrossRef]
- Darwish, A.A.A.; Rashad, M.; AL-Aoh, H.A. Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes Pigments 2019, 160, 563–571. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, X.; Peng, L.L.; Han, S.Q.; Hao, C.; Jiang, C.L.; Wang, H.L.; Fan, X.B. Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere 2021, 279, 130504. [Google Scholar] [CrossRef]
- Krstic, V.; Urosevic, T.; Pesovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Luo, J.M.; Liu, C.B.; Chu, L.; Crittenden, J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018, 131, 246–254. [Google Scholar] [CrossRef]
- Bai, X.; Du, Y.Y.; Hu, X.Y.; He, Y.D.; He, C.L.; Liu, E.Z.; Fan, J. Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst. Appl. Catal. B Environ. 2018, 239, 204–213. [Google Scholar] [CrossRef]
- Xu, Y.L.; Ren, B.; Wang, R.; Zhang, L.H.; Jiao, T.F.; Liu, Z.F. Facile preparation of rod-like MnO nanomixtures via hydrothermal approach and highly efficient removal of methylene blue for wastewater treatment. Nanomaterials 2019, 9, 10. [Google Scholar] [CrossRef]
- Zeng, Q.K.; Qi, X.L.; Zhang, M.Y.; Tong, X.Q.; Jiang, N.; Pan, W.H.; Xiong, W.; Li, Y.H.; Xu, J.X.; Shen, J.L. Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int. J. Biol. Macromol. 2020, 145, 1049–1058. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, X.H.; Wang, G.H.; Hao, C.; Li, X.; Li, T.H. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Compos. Part. B Eng. 2019, 169, 45–54. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Xiao, W.H.; Shen, G.H.; Ji, G.Y.; Zhang, Y.; Gao, C.F.; Han, L.J. Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: Competitive effects of ion exchange and precipitation. Bioresour. Technol. 2019, 273, 70–76. [Google Scholar] [CrossRef]
- Naushad, M.; Ahamad, T.; Al-Maswari, B.M.; Alqadami, A.A.; Alshehri, S.M. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 2017, 330, 1351–1360. [Google Scholar] [CrossRef]
- Maleki, A.; Hajizadeh, Z.; Sharifi, V.; Emdadi, Z. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J. Clean. Prod. 2019, 215, 1233–1245. [Google Scholar] [CrossRef]
- Xu, Z.T.; Gu, S.W.; Rana, D.; Matsuura, T.; Lan, C.Q. Chemical precipitation enabled UF and MF filtration for lead removal. J. Water Process Eng. 2021, 41, 101987. [Google Scholar] [CrossRef]
- Wu, J.W.; Wang, T.; Wang, J.W.; Zhang, Y.S.; Pan, W.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total. Environ. 2021, 754, 142150. [Google Scholar] [CrossRef]
- Liu, X.S.; Bai, X.; Dong, L.Y.; Liang, J.S.; Jin, Y.; Wei, Y.N.; Li, Y.; Huang, S.Q.; Qu, J.J. Composting enhances the removal of lead ions in aqueous solution by spent mushroom substrate: Biosorption and precipitation. J. Clean. Prod. 2018, 200, 1–11. [Google Scholar] [CrossRef]
- Hevira, L.; Rahmayeni, Z.; Ighalo, J.O.; Aziz, H.; Zein, R. Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J. Ind. Eng. Chem. 2021, 97, 188–199. [Google Scholar] [CrossRef]
- Mosavi, S.A.; Ghadi, A.; Gharbani, P.; Mehrizad, A. Photocatalytic removal of Methylene Blue using Ag@CdSe/Zeoilte nanocomposite under visible light irradiation by Response Surface Methodology. Mater. Chem. Phys. 2021, 267, 124696. [Google Scholar] [CrossRef]
- Borghei, S.A.; Zare, M.H.; Ahmadi, M.; Sadeghi, M.H.; Marjani, A.; Shirazian, S.; Ghadiri, M. Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode. Arab. J. Chem. 2021, 14, 102958. [Google Scholar] [CrossRef]
- Madduri, S.; Elsayed, I.; Hassan, E.B. Novel oxone treated hydrochar for the removal of Pb(II) and methylene blue (MB) dye from aqueous solutions. Chemosphere 2020, 260, 127683. [Google Scholar] [CrossRef] [PubMed]
Type of Pollutant | Pb2+ | MB |
---|---|---|
Pseudo-First-Order Model | ||
qe (mg g−1) | 203.5 | 109.1 |
k1 (min−1) | 0.031 | 0.248 |
R2 | 0.988 | 0.933 |
Pseudo-Second-Order Model | ||
qe (mg g−1) | 233.8 | 121.3 |
k2 (g mg−1 min−1) | 1.5 × 10−4 | 0.003 |
R2 | 0.994 | 0.998 |
Type of Pollutant | Pb2+ | MB |
---|---|---|
Langmuir | ||
qm (mg g−1) | 452.5 | 230.9 |
KL (L mg−1) | 0.091 | 0.144 |
R2 | 0.979 | 0.911 |
Freundlich | ||
KF (L g−1) | 173.2 | 49.43 |
1/n | 0.164 | 0.367 |
R2 | 0.840 | 0.831 |
Temkin | ||
A (mg L−1) | 191.3 | 12.21 |
B | 43.82 | 50.24 |
R2 | 0.884 | 0.904 |
Adsorbent | Removal Method | Adsorbate | pH | qe (mg/g) | Ref |
---|---|---|---|---|---|
CPEMF | Chemical precipitation | Pb2+ | 8.5 | Not given | [43] |
BC400 | Ion exchange | Pb2+ | 5 ± 0.05 | 57.13 | [44] |
CSMS | Biosorption/precipitation | Pb2+ | 3 | 125.2 | [45] |
WS-BC + BM | Ion exchange and precipitation | Pb2+ | 5.0 | 134.68 | [40] |
PAA/LS/BC | Coordination complex | Pb2+ | 6 | 201.5 | This study |
TC | Biosorption | MB | 5 | 88.62 | [46] |
Ag@CdSe/Zeoilte | Catalytic degradation | MB | 8 | 10.75 | [47] |
AC | Chemisorption | MB | 7 | 24 | [48] |
OHC | Chemical interaction | MB | 7 | 86.7 | [49] |
PAA/LS/BC | Coordination complex | MB | 6 | 108.6 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Cheng, N.; Liu, Q. RETRACTED: Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb2+ and MB in Wastewater. Materials 2021, 14, 3537. https://doi.org/10.3390/ma14133537
Zhang N, Cheng N, Liu Q. RETRACTED: Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb2+ and MB in Wastewater. Materials. 2021; 14(13):3537. https://doi.org/10.3390/ma14133537
Chicago/Turabian StyleZhang, Nannan, Nan Cheng, and Qing Liu. 2021. "RETRACTED: Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb2+ and MB in Wastewater" Materials 14, no. 13: 3537. https://doi.org/10.3390/ma14133537
APA StyleZhang, N., Cheng, N., & Liu, Q. (2021). RETRACTED: Functionalized Biomass Carbon-Based Adsorbent for Simultaneous Removal of Pb2+ and MB in Wastewater. Materials, 14(13), 3537. https://doi.org/10.3390/ma14133537