Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications
Abstract
:1. Introduction
- Linear elastic model: simulations are performed considering small deformations to guarantee the structural stability of the scaffolds. Once implanted, it is important that the porous channels remain stable to avoid any negative impact on cell spreading and nutrients and oxygen supply. Scaffolds should be designed avoiding plastic deformation or significant deformations.
- Materials are assumed to be homogeneous and isotropic.
- No separation contact condition between the scaffold filaments and the two compressive plates.
- Pore size differences between designed and printed scaffolds are neglected.
2. Materials and Methods
2.1. Material
2.2. Scaffold Design and Fabrication
2.3. Mechanical Compression Tests
2.4. Finite Element Simulation
3. Results and Discussion
3.1. Mechanical Compression Results
3.2. Finite Element Analysis Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Vyas, C.; Poologasundarampillai, G.; Pape, I.; Hinduja, S.; Mirihanage, W.; Bartolo, P. Structural evolution of PCL during melt extrusion 3D printing. Macromol. Mater. Eng. 2018, 303, 1700494. [Google Scholar] [CrossRef] [Green Version]
- Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Motaung, K.S.C.M. Advances in regenerative medicine and tissue engineering: Innovation and transformation of medicine. Stem Cell. Int. 2018, 2018, 2495848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, C.; Pereira, R.; Huang, B.; Liu, F.; Wang, W.; Bartolo, P. Engineering the vasculature with additive manufacturing. Curr. Opin. Biomed. Eng. 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Madrid, A.P.M.; Vrech, S.M.; Sanchez, M.A.; Rodriguez, A.P. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C 2019, 100, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.M.; George, J.H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, T.; Shahroodi, A.; Ebrahimzadeh, M.H.; Mousavian, A.; Movaffagh, J.; Moradi, A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018, 6, 90–99. [Google Scholar] [PubMed]
- Chen, Q.; Zou, B.; Lai, Q.; Wang, Y.; Zhu, K.; Deng, Y.; Huang, C. 3D printing and osteogenesis of loofah-like hydroxyapatite bone scaffolds. Ceram. Int. 2021, 47, 20352–20361. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Oliveira, S.M.; Alves, J.L.; Pedro, A.J.; Reis, R.L.; Fernandes, E.M.; Mano, J.F. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly (ε-caprolactone) scaffolds. Biofabrication 2017, 9, 025015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Zhang, Q.; Wootton, D.M.; Chiou, R.; Li, D.; Lu, B.; Lelkes, P.; Zhou, J. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method. J. Appl. Biomater. Funct. Mater. 2014, 12, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, W.; Bártolo, P. Investigating the Effect of Carbon Nanomaterials Reinforcing Poly (ε-Caprolactone) Printed Scaffolds for Bone Repair Applications. Int. J. Bioprint. 2020, 6, 266. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Caetano, G.F.; Chiang, W.H.; Braz, A.L.; Blaker, J.J.; Frade, M.A.C.; Bartolo, P.J.D.S. Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration. Int. J. Bioprint. 2016, 2, 85. [Google Scholar] [CrossRef]
- Shor, L.; Güçeri, S.; Chang, R.; Gordon, J.; Kang, Q.; Hartsock, L.; An, Y.; Sun, W. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 2009, 1, 015003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, Q.; Li, H.; Xu, X.; Fu, X.; Pan, J.; Wang, H.; Fuh, J.Y.H.; Bai, Y.; Wei, S. An effective dual-factor modified 3D-printed PCL scaffold for bone defect repair. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Almeida, H.; Bidanda, B.; Bártolo, P.J. Additive Biomanufacturing Processes to Fabricate Scaffolds for Tissue Engineering. In Virtual Prototyping & Bio Manufacturing in Medical Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 95–124. [Google Scholar]
- Liu, F.; Wang, W.; Mirihanage, W.; Hinduja, S.; Bartolo, P.J. A plasma-assisted bioextrusion system for tissue engineering. CIRP Ann. 2018, 67, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Liu, F. Design of a Fabrication and Evaluation of a Hybrid Biomanufacturing System for Tissue Engineering. Ph.D. Thesis, University of Manchester, Manchester, UK, 2018. [Google Scholar]
- Miranda, P.; Pajares, A.; Guiberteau, F. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater. 2008, 4, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Vijayavenkataraman, S.; Chong, G.L.; Fuh, J.Y.H.; Lu, W.F. Computational design and optimization of nerve guidance conduits for improved mechanical properties and permeability. J. Biomech. Eng. 2019, 141, 051007. [Google Scholar] [CrossRef] [PubMed]
- Almeida, H.A.; Bártolo, P.J. Numerical simulations of bioextruded polymer scaffolds for tissue engineering applications. Polym. Int. 2013, 62, 1544–1552. [Google Scholar] [CrossRef]
- Gibson, L. Cellular Solids. MRS Bull. 2003, 28, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Bossard, C.; Granel, H.; Wittrant, Y.; Jallot, É.; Lao, J.; Vial, C.; Tiainen, H. Polycaprolactone/bioactive glass hybrid scaffolds for bone regeneration. Biomed. Glasses 2018, 4, 108–122. [Google Scholar] [CrossRef]
- Liu, F.; Vyas, C.; Poologasundarampillai, G.; Pape, I.; Hinduja, S.; Mirihanage, W.; Bartolo, P.J. Process-driven microstructure control in melt-extrusion-based 3D printing for tailorable mechanical properties in a polycaprolactone filament. Macromol. Mater. Eng. 2018, 303, 1800173. [Google Scholar] [CrossRef]
Filament Distance (mm) | 1 | 1.5 | 2 | 2.5 |
---|---|---|---|---|
Filament diameter (mm) | 0.5 | |||
Scaffold length/width (mm) | 11 | |||
Number of layers | 10 | |||
Deposition velocity (mm/s) | 3 | |||
Screw rotation velocity (rpm) | 15 | |||
Material chamber temperature (°C) | 100 | |||
Screw chamber temperature (°C) | 100 |
Filament Distance (mm) | Porosity (%) | Experimentally Obtained Compressive Modulus (MPa) | Numerically Obtained Compressive Modulus (MPa) |
---|---|---|---|
1 | 60.7 | 46.0 ± 2.5 | 41.5 ± 1.0 |
1.5 | 75.0 | 25.5 ± 3.0 | 20.2 ± 0.3 |
2 | 78.6 | 22.5 ± 1.0 | 15.2 ± 0.7 |
2.5 | 85.7 | 6.0 ± 0.4 | 5.6 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Omar, A.M.; Bartolo, P. Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications. Materials 2021, 14, 3546. https://doi.org/10.3390/ma14133546
Xu Z, Omar AM, Bartolo P. Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications. Materials. 2021; 14(13):3546. https://doi.org/10.3390/ma14133546
Chicago/Turabian StyleXu, Zhanyan, Abdalla M. Omar, and Paulo Bartolo. 2021. "Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications" Materials 14, no. 13: 3546. https://doi.org/10.3390/ma14133546
APA StyleXu, Z., Omar, A. M., & Bartolo, P. (2021). Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications. Materials, 14(13), 3546. https://doi.org/10.3390/ma14133546