Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery
Abstract
:1. Strategies for Encapsulation of Cargo into MOFs
2. Stimuli-Responsive MOFs for Cargo Delivery
3. Functionalization of MOFs for Cargo Delivery
4. Applications of MOFs in Drug Delivery
5. Conclusions, Challenging Features, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yap, M.H.; Fow, K.L.; Chen, G.Z. Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2017, 2, 218–245. [Google Scholar] [CrossRef]
- Maity, A.; Polshettiwar, V. Scalable and sustainable synthesis of size-controlled monodisperse dendritic fibrous nanosilica quantified by E-factor. ACS Appl. Nano Mater. 2018, 1, 3636–3643. [Google Scholar] [CrossRef]
- Quercia, G.; Lazaro, A.; Geus, J.; Brouwers, H. Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cem. Concr. Compos. 2013, 44, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 1–29. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Haydar, M.A.; Abid, H.R.; Sunderland, B.; Wang, S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des. Dev. Ther. 2017, 11, 2685. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chen, T.; Pan, X. Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano 2021, 15, 3808–3848. [Google Scholar] [CrossRef]
- Duman, F.D.; Forgan, R.S. Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B 2021. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal–organic frameworks for drug delivery: A conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef]
- Rabiee, N.; Bagherzadeh, M.; Jouyandeh, M.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M.; Shokouhimehr, M.; Varma, R.S. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Appl. Bio Mater. 2021, 4, 5106–5121. [Google Scholar] [CrossRef]
- Sun, X.; He, G.; Xiong, C.; Wang, C.; Lian, X.; Hu, L.; Li, Z.; Dalgarno, S.J.; Yang, Y.-W.; Tian, J. One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 3679–3693. [Google Scholar] [CrossRef] [PubMed]
- Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis 2018, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lawson, S.; Newport, K.; Pederniera, N.; Rownaghi, A.A.; Rezaei, F. Curcumin Delivery on Metal–Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. ACS Appl. Bio Mater. 2021, 4, 3423–3432. [Google Scholar] [CrossRef]
- Abánades Lázaro, I.; Wells, C.J.; Forgan, R.S. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew. Chem. Int. Ed. 2020, 59, 5211–5217. [Google Scholar] [CrossRef]
- Cui, R.; Zhao, P.; Yan, Y.; Bao, G.; Damirin, A.; Liu, Z. Outstanding Drug-Loading/Release Capacity of Hollow Fe-Metal–Organic Framework-Based Microcapsules: A Potential Multifunctional Drug-Delivery Platform. Inorg. Chem. 2021, 60, 1664–1671. [Google Scholar] [CrossRef]
- Wen, T.; Quan, G.; Niu, B.; Zhou, Y.; Zhao, Y.; Lu, C.; Pan, X.; Wu, C. Versatile Nanoscale Metal–Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. Small 2021, 17, 2005064. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J. Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 2019, 26, 3341–3369. [Google Scholar] [CrossRef]
- Nagata, S.; Kokado, K.; Sada, K. Metal–organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chem. Commun. 2015, 51, 8614–8617. [Google Scholar] [CrossRef]
- Karmakar, A.; Mileo, P.G.; Bok, I.; Peh, S.B.; Zhang, J.; Yuan, H.; Maurin, G.; Zhao, D. Thermo-Responsive MOF/Polymer Composites for Temperature-Mediated Water Capture and Release. Angew. Chem. Int. Ed. 2020, 59, 11003–11009. [Google Scholar] [CrossRef]
- Wu, M.X.; Yang, Y.W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Zhang, H.; Chen, Z.; Ling, Y.; Yang, Y.; Liu, X.; Jia, Y.; Zhou, Y. TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging. Microporous Mesoporous Mater. 2021, 315, 110900. [Google Scholar] [CrossRef]
- Allegretto, J.A.; Giussi, J.M.; Moya, S.E.; Azzaroni, O.; Rafti, M. Synthesis and characterization of thermoresponsive ZIF-8@ PNIPAm-co-MAA microgel composites with enhanced performance as an adsorption/release platform. RSC Adv. 2020, 10, 2453–2461. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Su, H.; Wong, Y.-L.E.; Chen, X.; Chan, T.-W.D. Thermo-responsive polymer tethered metal-organic framework core-shell magnetic microspheres for magnetic solid-phase extraction of alkylphenols from environmental water samples. J. Chromatogr. A 2016, 1456, 42–48. [Google Scholar] [CrossRef]
- Bieniek, A.; Terzyk, A.P.; Wiśniewski, M.; Roszek, K.; Kowalczyk, P.; Sarkisov, L.; Keskin, S.; Kaneko, K. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Prog. Mater. Sci. 2020, 117, 100743. [Google Scholar] [CrossRef]
- Velásquez-Hernández, M.d.J.; Linares-Moreau, M.; Astria, E.; Carraro, F.; Alyami, M.Z.; Khashab, N.M.; Sumby, C.J.; Doonan, C.J.; Falcaro, P. Towards applications of bioentities@ MOFs in biomedicine. Coord. Chem. Rev. 2020, 429, 213651. [Google Scholar] [CrossRef]
- de Koning, M.C.; van Grol, M.; Breijaert, T. Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal–organic frameworks UiO-66-NH2, MOF-808, NU-1000, and PCN-777. Inorg. Chem. 2017, 56, 11804–11809. [Google Scholar] [CrossRef]
- Ni, M.; Gong, M.; Li, X.; Gu, J.; Li, B.; Chen, Y. Dimensions of fluorescence kinetic concentration of doped morphology homologs synthesized by TCPP and UiO-66 MOF. Appl. Mater. Today 2021, 23, 100982. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Laha, D.; Chandra, S.; Karmakar, P.; Sahu, S.K. Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells. Chem. Eng. J. 2017, 319, 200–211. [Google Scholar] [CrossRef]
- Bůžek, D.; Adamec, S.; Lang, K.; Demel, J. Metal–organic frameworks vs. buffers: Case study of UiO-66 stability. Inorg. Chem. Front. 2021, 8, 720–734. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Deng, Q.; Sang, Y.; Dong, K.; Ren, J.; Qu, X. Nature-Inspired Construction of MOF@ COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia-Like Surface for Enhanced Bacterial Inhibition. Angew. Chem. Int. Ed. 2021, 60, 3469–3474. [Google Scholar] [CrossRef]
- Zhang, Y.; Jang, Y.; Lee, J.-E.; Ahn, J.; Xu, L.; Holden, M.R.; Cornett, E.M.; Krajewski, K.; Klein, B.J.; Wang, S.-P. Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-W.; Wang, Y.; Zhang, X.-M. Homochiral MOF as circular dichroism sensor for enantioselective recognition on nature and chirality of unmodified amino acids. ACS Appl. Mater. Interfaces 2017, 9, 20991–20999. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.M.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal—Organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, S.; Carmona, F.J.; Maldonado, C.R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J.A.; Barea, E. Nanoscaled zinc pyrazolate metal–organic frameworks as drug-delivery systems. Inorg. Chem. 2016, 55, 2650–2663. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; He, C.; Poon, C.; Lin, W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J. Mater. Chem. B 2014, 2, 8249–8255. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Qin, C.; Wang, C.G.; Su, Z.M.; Wang, S.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Wang, E.B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629–5632. [Google Scholar] [CrossRef]
- Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P. Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriers. Int. J. Pharm. 2016, 509, 208–218. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Zou, Q.; Sun, S.-K.; Yu, C.; Zhang, X.; Li, R.-J.; Fu, Y.-Y. Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. 2016, 7, 5294–5301. [Google Scholar] [CrossRef] [Green Version]
- Bellido, E.; Hidalgo, T.; Lozano, M.V.; Guillevic, M.; Simón-Vázquez, R.; Santander-Ortega, M.J.; González-Fernández, Á.; Serre, C.; Alonso, M.J.; Horcajada, P. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: Toward stealth drug nanocarriers. Adv. Healthc. Mater. 2015, 4, 1246–1257. [Google Scholar] [CrossRef]
- Fang, J.; Yang, Y.; Xiao, W.; Zheng, B.; Lv, Y.-B.; Liu, X.-L.; Ding, J. Extremely low frequency alternating magnetic field–triggered and MRI–traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. Nanoscale 2016, 8, 3259–3263. [Google Scholar] [CrossRef]
- Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Au 25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale 2015, 7, 19568–19578. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Bhattacharya, D.; Sahu, S.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016, 45, 2963–2973. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Xia, G.; Zhou, S.; Liu, Z.; Zhang, N.; Wang, H.; Guo, Z. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@ C@ MIL-100 (Fe) nanoparticles. Biomaterials 2016, 107, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Dastidar, P. Coordination Polymers Derived from Non-Steroidal Anti-Inflammatory Drugs for Cell Imaging and Drug Delivery. Chem. A Eur. J. 2016, 22, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chem. Commun. 2016, 52, 5402–5405. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L. Nanoscale metal− organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016, 97, 1–9. [Google Scholar] [PubMed]
- Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Zhao, G.; Xia, G.; Li, R.; Liu, Z.; Tian, J.; Wang, H. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials 2016, 100, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, N.; Bagherzadeh, M.; Heidarian Haris, M.; Ghadiri, A.M.; Matloubi Moghaddam, F.; Fatahi, Y.; Dinarvand, R.; Jarahiyan, A.; Ahmadi, S.; Shokouhimehr, M. Polymer-Coated NH2-UiO-66 for the Codelivery of DOX/pCRISPR. ACS Appl. Mater. Interfaces 2021, 13, 10796–10811. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Qin, C.; Yu, C.; Lu, Y.; Zhang, H.; Xue, F.; Wu, D.; Zhou, Z.; Yang, S. RGD-Conjugated Nanoscale Coordination Polymers for Targeted T1- and T2- weighted Magnetic Resonance Imaging of Tumors in Vivo. Adv. Funct. Mater. 2014, 24, 1738–1747. [Google Scholar] [CrossRef]
- Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Dewitte, H. The dawn of mRNA vaccines: The COVID-19 case. J. Control. Release 2021, 333, 511–520. [Google Scholar] [CrossRef]
MOF-Based Nanomaterial | Cargo | Function | Essential Components | Targeted Cell Line(s) | Disadvantages | Refs. |
---|---|---|---|---|---|---|
MIL-101-NH2@silica shell@RGDfk | Cisplatin | Chemotherapy, Optical imaging, Targeted drug delivery, | 1,4-BDC-NH2, Fe3+, Br-BODIPY, silica shell | HT-29 | toxicity in higher concentrations, Not green, complex synthesis method | [33] |
Zn-H2BDP | Mitoxantrone | Sustained drug release in more sophisticated conditions, Chemotherapy, and reducing toxicity | Zn2+, H2BDP | J774 | Not applicable for in vivo experiments, not green | [34] |
Mn-bisphosphonate@peg-AA | Zoledronate | Magnetic resonance imaging (MRI) contrast agent, chemotherapy | DOPA, DSPE, DOPC, anisamide, Mn2+ | AsPC-1, MCF-7 | Expensive, Not green, toxic in some higher concentrations | [35] |
Zn-TATAT | 5-Fu | Sustained drug release in more sophisticated conditions, Chemotherapy, and reducing toxicity | TaTAT, Zn2+ | - | Considerable aggregations in most of the concentrations, limited usage for in vivo experiments | [36] |
UiO-67@ and UiO-66@PCL | Taxol, Cisplatin | Sustained release of drug in a limited condition, Chemotherapy, and reduced toxicity | UiO-67, UiO-66, Polycaprolactone, Polyethylene glycol | HSC-3, U-87MG | high-temperature of synthesis, not green, drastic toxicity in some concentrations, not cost-effective | [37] |
UiO-66@Fe3O4 | DOX | Reduced toxicity, Chemotherapy | 1,4-BDC, ZrCl4, Fe3O4 | 3T3, HeLa | Not green, limited utilization, non-sustained release | [38] |
MIL-100-Hep | Caffeine | Chemotherapy, limited inflammation response | 1,3,5-BTC, Fe3+, Rhodamine, Heparin | HL60, J774.A1 | Not green, not sequential drug release, limited usage, difficult synthesis method | [39] |
ZIF-90@Fe3O4 | 5-Fu | Chemotherapy, MRI, Magnetic thermal delivery | Rat serum albumin, Zn2+, Fe3O4, Polyvinylpyrrolidone (PVP) | - | Not green, considerable cytotoxicity, limited application | [40] |
ZIF-8-Au25@Fe3O4 | - | Targeted delivery, MRI, chemotherapy, photodynamic therapy | Fe3O4, Zn2+, HMelM | HeLa L929 | Not green, considerable toxicity, harsh synthesis condition, limited sustained release | [41] |
IRMOF-3@FA-RITC@Fe3O4 | Paclitaxel | Optical imaging, MRI, Chemotherapy | Folic acid, PVP, Fe3O4, Zn2+, rhodamine B isothiocyanate | NIH3T3, HeLa | Not green, difficult synthesis method, very low yield of synthesis, toxic | [42] |
MIL-100@C@Fe3O4 | Dihydroxyacetone (DHA), Fe(III) | MRI, pH-responsive delivery, optical imaging | Fe3O4, Fe3+, ferrocene, 1,3,5-BTC | HeLa, A549 | Not green, low yield of synthesis, harsh synthesis method | [43] |
Mn coordination polymers | Non-steroidal anti-inflammatory drugs (NSAIDs) | Drug delivery, cell imaging | NSAIDs, Mn(ClO4)2 | RAW264.7 | Not green, complicated synthesis procedure, not scalable, limited toxicity | [44] |
UiO-PDT | - | Photodynamic therapy | 12-BDP, 1,4-BDC, ZrCl4 | CT26, C26, B16F10 | Not green, limited toxicity, expensive synthesis method | [45] |
TCPP-Hf-PEG | - | Radiation therapy, photodynamic therapy | Meso-Tetra(4-carboxyphenyl)porphine (TCPP), HfCl4, polyethyleneglycol (PEG) | NIH3T3, HeLa, 4T1 | Not green, limited cell viability, limited in vivo applications | [46] |
MIL-10@PB | Artemisinin | Optical imaging, MRI, Chemotherapy | PVP, 1,3,5-BTC, Fe3+ | HeLa | Not green, complex synthesis procedure, relatively low cell viability | [47] |
p(HEMA)-GMA-UiO-66 | DOX and pCRISPR | Targeted drug/gene delivery, sustained-release in tissue and cells, stimuli-responsive delivery, lowest cytotoxicity, fully biocompatible | UiO-66, Glycidyl methacrylate (GMA), (Hydroxyethyl)methacrylate (HEMA) | HepG2, HeLa, HEK-293, PC12 | Limited in vivo applications | [48] |
Fc-Gd@SiO2(RBITC)-RGD | - | Targeting, MRI | Fc, Gd3+, RBITC, silica | MCF-7, U87MG | Not green, limited in vivo usage, considerable cytotoxicity | [49] |
p(NIPAM)-GMA-UiO-66 | DOX and pCRISPR | Targeted drug/gene delivery, sustained release in tissue and cells, stimuli-responsive delivery, lowest cytotoxicity, fully biocompatible | UiO-66, GMA, NIPAM | HEK-293, HeLa, HepG2, PC12 | Limited in vivo applications | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials 2021, 14, 3652. https://doi.org/10.3390/ma14133652
Saeb MR, Rabiee N, Mozafari M, Mostafavi E. Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials. 2021; 14(13):3652. https://doi.org/10.3390/ma14133652
Chicago/Turabian StyleSaeb, Mohammad Reza, Navid Rabiee, Masoud Mozafari, and Ebrahim Mostafavi. 2021. "Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery" Materials 14, no. 13: 3652. https://doi.org/10.3390/ma14133652
APA StyleSaeb, M. R., Rabiee, N., Mozafari, M., & Mostafavi, E. (2021). Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials, 14(13), 3652. https://doi.org/10.3390/ma14133652