Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash
Abstract
:1. Introduction
2. Materials and Evaluation Methods
2.1. Materials
2.2. Evaluation Methods
2.3. Statistical Analaysis
3. Results and Discussions
3.1. Concrete Slump
3.2. Setting
3.3. Compressive Strength
3.4. Elastic Modulus
3.5. Rapid Chloride Penetration Test (RCPT)
3.6. Scaling Resistance
3.7. Alkali–Silica Reaction
3.8. Statistical Analysis
3.9. Microstructure of Cement Pastes
4. Summary and Future Recommendations
- The concrete with nano CaCO3 had improved mechanical properties (compressive strength and elastic modulus) at all ages compared to fly ash concretes.
- The use of nano CaCO3 reduced the permeability of both OPC and PLC concretes. The permeability of OP-1 was lower than that of concretes with fly ash, while PL-1 had a permeability comparable to that of concretes with fly ash.
- The use of nano CaCO3 improved the scaling resistance of both OPC and PLC concretes, with the highest resistance for PLC concrete, thus mitigating the major limitation of concretes with fly ash for use in freeze–thaw environments.
- The addition of nano CaCO3 reduced the expansion of both OPC and PLC concretes by approximately 50% and 20%, respectively. The expansion of OPC and PLC concretes was lower than that of concrete with Class C fly ash but was not as effective as for Class F fly ash.
- SEM images showed that the microstructure of concrete improved with the addition of both nano CaCO3 and fly ash in concretes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T. Statista. Available online: https://www.statista.com/statistics/219343/cement-production-worldwide/#:~:text=Cement%20production%20reached%20an%20estimated,in%202019%20in%20the%20U.S. (accessed on 5 June 2020).
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- WBCSD. Cement Technology Roadmap 2009: Carbon Emissions Reductions Up to 2050; World Business Council for Sustainable Development and International Energy Agency: Geneva, Switzerland, 2009. [Google Scholar]
- CarbiCrete. 2020. Available online: http://carbicrete.com/ (accessed on 2 September 2016).
- CarbonCure. 2020. Available online: https://www.carboncure.com/ (accessed on 2 September 2020).
- Heliogen. 2020. Available online: https://heliogen.com/ (accessed on 2 September 2016).
- Solidia. 2020. Available online: https://www.solidiatech.com/solutions.html (accessed on 2 September 2020).
- Vance, K.; Falzone, G.; Pignatelli, I.; Bauchy, M.; Balonis, M.; Sant, G. Direct carbonation of Ca(OH)2 using liquid and supercritical CO2: Implications for carbon-neutral cementation. Ind. Eng. Chem. Res. 2015, 54, 8908–8918. [Google Scholar] [CrossRef]
- Juenger, M.C.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Siddique, R.; Klaus, J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H. A review on effeccts of limestone powder on the properties of concrete. Constr. Build. Mater. 2018, 192, 153–166. [Google Scholar] [CrossRef]
- Malhotra, V.M. Fly ash, slag, silica fume, and rice husk ash in concrete: A review. Concr. Int. 1993, 15, 23–28. [Google Scholar]
- Thomas, M.D.A. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Skokie, IL, USA, 2007; Volume 5420. [Google Scholar]
- Saha, A.K.; Khan, M.; Sarker, P.; Shaikh, F.A.; Pramanik, A. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Constr. Build. Mater. 2018, 171, 743–758. [Google Scholar] [CrossRef]
- Moghaddam, F.; Sirivivatnanon, V.; Vessalas, K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud. Constr. Mater. 2019, 10, e00218. [Google Scholar] [CrossRef]
- Ghafari, E.; Feys, D.; Khayat, K. Feasibility of using natural SCMs in concrete for infrastructure applications. Constr. Build. Mater. 2016, 127, 724–732. [Google Scholar] [CrossRef]
- Naranjo, A. Fly Ash Supply Update; Texas Department of Transportation: Austin, TX, USA, 2019.
- Shon, C.-S.; Kim, Y.-S. Evaluation of West Texas natural zeolite as an alternative of ASTM Class F fly ash. Constr. Build. Mater. 2013, 47, 389–396. [Google Scholar] [CrossRef]
- Fořt, J.; Šál, J.; Ševčík, R.; Doleželová, M.; Keppert, M.; Jerman, M.; Záleská, M.; Stehel, V.; Černý, R. Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects. Constr. Build. Mater. 2021, 271, 121544. [Google Scholar] [CrossRef]
- Senior, C.; Thorneloe, S.; Khan, B.; Goss, D. The fate of mercury collected from air pollution control devices. J. Air Waste Manag. Assoc. 2009, 15–21. [Google Scholar]
- Juenger, M.C.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Prasara-A, J.; Gheewala, S.H. Sustainable utilization of rice husk ash from power plants: A review. J. Clean. Prod. 2017, 167, 1020–1028. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Poudyal, L.; Adhikari, K.; Won, M. Mechanical and durability properties of portland limestone cement (PLC) incorporated with nano calcium carbonate (CaCO3). Materials 2021, 14, 905. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Norhasri, M.M.; Hamidah, M.; Fadzil, A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Poudyal, L. Use of Nanotechnology in Concrete. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, 2018. [Google Scholar]
- Safiuddin; Gonzalez, M.; Cao, J.; Tighe, S.L. State-of-the-art report on use of nano-materials in concrete. Int. J. Pavement Eng. 2014, 15, 940–949. [Google Scholar] [CrossRef]
- Silvestre, N.; De Brito, J. Review on concrete nanotechnology. Eur. J. Environ. Civ. Eng. 2016, 20, 455–485. [Google Scholar] [CrossRef]
- Shah, S.P.; Hou, P.; Konsta-Gdoutos, M.S. Nano-modification of cementitious material: Toward a stronger and durable concrete. J. Sustain. Cem. Mater. 2015, 5, 1–22. [Google Scholar] [CrossRef]
- Cao, M.; Ming, X.; He, K.; Li, L.; Shen, S. Effect of macro-, micro- and nano-calcium carbonate on properties of cementitious composites—A review. Materials 2019, 12, 781. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, L.; Liu, A.; Wang, X. Effect of nano-CaCO3 on properties of cement paste. Energy Procedia 2012, 16, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Poudyal, L.; Adhikari, K. Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resour. Environ. Sustain. 2021, 4, 100024. [Google Scholar]
- Batuecas, E.; Liendo, F.; Tommasi, T.; Bensaid, S.; Deorsola, F.; Fino, D. Recycling CO2 from flue gas for CaCO3 nanoparticles production as cement filler: A Life Cycle Assessment. J. CO2 Util. 2021, 45, 101446. [Google Scholar] [CrossRef]
- Mzmee, N.; Shafiq, N. Investigating the impacts of ultra-fine calcium carbonate in high-volume fly ash concrete for structural rehabilitation for sustainable development. Sustainability 2019, 11, 4671. [Google Scholar] [CrossRef] [Green Version]
- Camiletti, J.; Soliman, A.M.; Nehdi, M.L. Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete. Mater. Struct. 2012, 46, 881–898. [Google Scholar] [CrossRef]
- Mishra, S.; Tiwari, A. Effect on compressive strength of concrete by partial replacement of cement with nano titanium dioxide and nano calcium carbonate. J. Civil Eng. Environ. Technol 2016, 5, 426–429. [Google Scholar]
- Shaikh, F.U.A.; Supit, S.W.M. Effects of superplasticizer types and mixing methods of nanoparticles on compressive strengths of cement pastes. J. Mater. Civ. Eng. 2016, 28, 06015008. [Google Scholar] [CrossRef]
- Sumer, M. Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes. Constr. Build. Mater. 2012, 34, 531–536. [Google Scholar] [CrossRef]
- Siddique, R. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 2004, 34, 487–493. [Google Scholar] [CrossRef]
- Stanish, K.D.; Hooton, R.D.; Thomas, M.D.A. Testing the Chloride Penetration Resistance. Available online: https://www.fhwa.dot.gov/publications/research/infrastructure/structures/chlconcrete.pdf (accessed on 8 July 2020).
- Bonavetti, V.; Rahhal, V.; Irassar, E. Studies on the carboaluminate formation in limestone filler-blended cements. Cem. Concr. Res. 2001, 31, 853–859. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Gao, P.; Wang, D.; Cao, Z. Effects of Deicing Salts on the Scaling Resistance of Concrete. J. Mater. Civ. Eng. 2015, 27, 04014160. [Google Scholar] [CrossRef]
- Heede, P.V.D.; Furniere, J.; De Belie, N. Influence of air entraining agents on deicing salt scaling resistance and transport properties of high-volume fly ash concrete. Cem. Concr. Compos. 2013, 37, 293–303. [Google Scholar] [CrossRef]
- Marchand, J.; Pleau, R.; Gagne, R. Deterioration of concrete due to freezing and thawing. Mater. Sci. Concr. 2000, 4, 283–354. [Google Scholar]
- Klieger, P.; Gebler, S. Fly ash and concrete durabilit. ACI Spec. Publ. SP 100 1987, 1, 1043–1069. [Google Scholar]
- Thomas, M.D.A. Deicer salt scaling resistance of fly ash concrete—The Lab. vs. The Field. ACI Fall 2000 Conv. 2000. [Google Scholar]
Constituents | OPC Type I/II | PLC Type IL | Class C Fly Ash | Class F Fly Ash |
---|---|---|---|---|
SiO2 | 19.7 | 20.2 | 35.5 | 63.67 |
Al2O3 | 4.7 | 5.5 | 18.3 | 24.26 |
Fe2O3 | 3.0 | 1.8 | 7.4 | 5.08 |
CaO | 62.1 | 65 | 25.9 | 2.70 |
MgO | 3.7 | 1.2 | 5.3 | 0.93 |
SO3 | 2.9 | 3.8 | 1.4 | 0.25 |
Equivalent alkalis | 0.59 | 0.38 | 2.15 | - |
LOI (Loss on Ignition) | 2.29 | 6.1 | 0.2 | 3.21 |
Mix Designation | Description | Nano CaCO3 | Fly Ash | Water | Cement | Coarse Aggregates | Fine Aggregates |
---|---|---|---|---|---|---|---|
OP-0 | OPC with 0% nano CaCO3 | 0 | 0 | 138 | 295 | 784 | 525 |
OP-1 | OPC with 1% nano CaCO3 | 3 | 0 | 138 | 292 | 784 | 525 |
PL-0 | PLC with 0% nano CaCO3 | 0 | 0 | 138 | 295 | 784 | 525 |
PL-1 | PLC with 1% nano CaCO3 | 3 | 0 | 138 | 292 | 784 | 525 |
F20 | OPC with 20% Class F fly ash | 0 | 59 | 138 | 236 | 784 | 525 |
C20 | OPC with 20% Class C fly ash | 0 | 59 | 138 | 236 | 784 | 525 |
Sample | OP-0 | PL-0 | F20 | C20 | Test |
---|---|---|---|---|---|
OP-1 | Y, > | Y, > | Y, > | Y, > | 3 days Comp. Strength |
PL-1 | Y, > | Y, > | Y, > | Y, > | |
OP-1 | Y, > | Y, > | Y, > | Y, > | 7 days Comp. Strength |
PL-1 | Y, > | Y, > | Y, > | Y, > | |
OP-1 | Y, > | Y, > | Y, > | Y, > | 28 days Comp. Strength |
PL-1 | Y, > | Y, > | Y, > | Y, > | |
OP-1 | Y, > | Y, > | Y, > | Y, > | 56 days Comp. Strength |
PL-1 | Y, > | Y, > | Y, > | N, > | |
OP-1 | Y, < | Y, < | Y, < | Y, < | Rapid Chloride Penetration |
PL-1 | Y, > | Y, < | N, < | N, > | |
OP-1 | N, < | N, < | N, > | N, < | Alkali Silica Reaction |
PL-1 | N, < | N, < | N, > | N, < | |
OP-1 | Y, < | N, > | Y, < | Y, < | Scaling Resistance |
PL-1 | Y, < | Y, < | Y, < | Y, < |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudyal, L.; Adhikari, K.; Won, M. Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash. Materials 2021, 14, 3729. https://doi.org/10.3390/ma14133729
Poudyal L, Adhikari K, Won M. Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash. Materials. 2021; 14(13):3729. https://doi.org/10.3390/ma14133729
Chicago/Turabian StylePoudyal, Lochana, Kushal Adhikari, and Moon Won. 2021. "Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash" Materials 14, no. 13: 3729. https://doi.org/10.3390/ma14133729
APA StylePoudyal, L., Adhikari, K., & Won, M. (2021). Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash. Materials, 14(13), 3729. https://doi.org/10.3390/ma14133729