Interface Design in Lightweight SiC/TiSi2 Composites Fabricated by Reactive Infiltration Process: Interaction Phenomena between Liquid Si-Rich Si-Ti Alloys and Glassy Carbon
Abstract
:1. Introduction
2. Wetting Tests: Experimental Details
2.1. Materials and Sample Preparation
2.2. Sessile Drop Experiments: Devices and Procedures
2.3. Surface and Microstructural Characterization
3. Results
3.1. Wettability of GC by Si-Rich Si-Ti Alloys as a Function of Si-Content
3.2. Wettability of GC by Si-24at%Ti Alloys as a Function of the Testing Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunn, B.D. Materials and Processes for Spacecraft and High Reliability Applications; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Miracle, D.B. Aeronautical applications of metal-matrix composites; Miracle, D.B., Donaldson, S.L., Eds.; ASM International: Ohio, OH, USA, 2001. [Google Scholar]
- Singh, H.; Nrip, S.J.; Tyagi, A.K. An overview of metal matrix composite: Processing and SiC based mechanical properties. J. Eng. Res. Stud. 2011, 2, 72–78. [Google Scholar]
- Simonenko, E.P.; Sevastyanov, D.V.; Simonenko, N.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Promising ultra high temperature ceramic materials for aerospace applications. Russ. J. Inorg. Chem. 2013, 58, 1669–1693. [Google Scholar] [CrossRef]
- Miracle, D.B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 2019, 10, 1805. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Roberts, S.N. Microgravity metal processing: From undercooled liquids to bulk metallic glasses. Nat. Commun. 2015, 1, 15003. [Google Scholar] [CrossRef] [Green Version]
- Nieberle, T.; Kumar, S.R.; Patnaik, A.; Goswami, C. Composite materials for armour application. In Advances in Engineering Design. Lecture Notes in Mechanical Engineering; Rakesh, P.K., Sharma, A.K., Singh, I., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Binner, J.; Porter, M.; Baker, B.; Zou, J.; Venkatachalam, V.; Diaz, V.R.; D’Angio, A.; Ramanujam, P.; Zhang, T.; Murthy, T.S.R.C. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—A review. Int. Mater. Rev. 2019, 65, 389–444. [Google Scholar] [CrossRef]
- Mileiko, S.T. Constituent compatibility and microstructural stability. Compr. Compos. Mater. 2000, 4, 265–287. [Google Scholar]
- Liu, G.; Zhang, X.; Yang, J.; Qiao, G. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): Joining processes, joint strength, and interfacial behavior. J. Adv. Ceram. 2019, 8, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Wua, X.; Peia, B.; Zhua, Y.; Huanga, Z. Joining of the Cf/SiC composites by a one-step Si infiltration reaction bonding. Mater. Charact. 2019, 155, 109799. [Google Scholar] [CrossRef]
- Lamouroux, F.; Bertrand, S.; Pailler, R.; Naslain, R.; Cataldi, M. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Compos. Sci. Technol. 1999, 59, 1073–1085. [Google Scholar] [CrossRef]
- Hald, H. Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials. Aerosp. Sci. Technol. 2003, 7, 551–559. [Google Scholar] [CrossRef]
- Wang, L.Y.; Luo, R.Y.; Cui, G.Y.; Chen, Z.F. Effects of pyrolysis temperatures on the oxidation behavior of PIP-processedSiCf/SiC composites. Ceram. Int. 2020, 46, 17846–17847. [Google Scholar] [CrossRef]
- Pulci, G.; Tului, M.; Tirillo, J.; Marra, F.; Lionetti, S.; Valente, T. High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles. J. Therm. Spray Technol. 2011, 20, 139–144. [Google Scholar] [CrossRef]
- Casalegno, V.; Deambrosis, S.D.; Corrazzari, I.; Turci, F.; Tatarko, P.; Damiano, O.; Cornillon, L.; Terenzi, A.; Puglia, M.; Torre, L.; et al. Design, realization, and characterization of advanced adhesives for joining ultra-stable C/C based components. Macromol. Mater. Eng. 2020, 305, 2000229. [Google Scholar] [CrossRef]
- Koyanagi, T.; Katoh, Y.; Hinoki, T.; Henager, C.; Ferraris, M.; Grasso, S. Progress in development of SiC-based joints resistant to neutron irradiation. J. Eur. Ceram. Soc. 2020, 40, 1023–1034. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Yang, H.; Du, S.; Huang, Q. The critical issues of SiC materials for future nuclear systems. Scripta Mater. 2018, 143, 149–153. [Google Scholar] [CrossRef]
- Salvo, M.; Lemoine, P.; Ferraris, M.; Montorsi, M. Joining of carbon-carbon composites for thermonuclear fusion applications. J. Am. Ceram. Soc. 1997, 80, 206–212. [Google Scholar] [CrossRef]
- Ness, J.N.; Page, T.F. Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 1986, 21, 1377–1397. [Google Scholar] [CrossRef]
- Whitehead, A.J.; Page, T.F. Fabrication and characterization of some novel reaction-bonded silicon carbide materials. J. Mater. Sci. 1992, 27, 839–852. [Google Scholar] [CrossRef]
- Jacques, E.; le Petitcorps, Y.; Maillé, L.; Lorrette, C.; Chaffron, L. Joining silicon carbide plates by titanium. Powder Metall. Metal Ceram. 2014, 52, 606–611. [Google Scholar] [CrossRef]
- He, Z.; Li, C.; Qi, J.; Huang, Y.; Feng, J.; Cao, J. Pre-infiltration and brazing behaviors of Cf/C composites with high temperature Ti-Si eutectic alloy. Carbon 2018, 140, 57–67. [Google Scholar] [CrossRef]
- Riccardi, B.; Nannetti, C.A.; Woltersdorf, J.; Pippel, E.; Petrisor, T. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys. Int. J. Mater. Prod. Technol. 2004, 20, 440–451. [Google Scholar] [CrossRef]
- He, Z.; Li, C.; Si, X.; Qi, J.; Cao, J. Wetting of Si–14Ti alloy on SiCf/SiC and C/C composites and their brazed joint at high temperatures. Ceram. Int. 2021, 47, 13845–13852. [Google Scholar] [CrossRef]
- He, Z.; Li, C.; Lan, B.; Zhang, C.; Qi, J.; Huang, Y.; Feng, J.; Cao, J. In situ TiSi2 microarray reinforced Si–Ti eutectic colonies in Cf/C composite joints for high-temperature application. Ceram. Int. 2020, 46, 10495–10502. [Google Scholar] [CrossRef]
- Roger, J.; Salles, M. Kinetics of liquid metal infiltration in TiC-SiC or SiC porous compacts. J. Alloy. Compd. 2021, 860, 158453. [Google Scholar] [CrossRef]
- Roger, J.; Salles, M. Thermodynamic of liquid metal infiltration in TiC–SiC or SiC porous compacts. J. Alloy. Compd. 2019, 802, 636–648. [Google Scholar] [CrossRef] [Green Version]
- Maillé, L.; le Ber, S.; Dourges, M.A.; Pailler, R.; Guette, A.; Roger, J. Manufacturing of ceramic matrix composite using a hybrid process combining TiSi2 active filler infiltration and preceramic impregnation and pyrolysis. J. Eur. Ceram. Soc. 2014, 34, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Giuranno, D.; Sobczak, N.; Bruzda, G.; Nowak, R.; Polkowski, W.; Polkowska, A.; Kudyba, A.; Novakovic, R. Studies of the Joining-Relevant Interfacial Properties in the Si-Ti/C and Si-Ti/SiC Systems. J. Mater. Eng. Perform. 2020, 29, 4864–4871. [Google Scholar] [CrossRef] [Green Version]
- Dadras, P.; Ngai, T.T.; Mehrotra, G.M. Joining of carbon-carbon composites using boron and titanium disilicide interlayers. J. Am. Ceram. Soc. 1997, 80, 125–132. [Google Scholar] [CrossRef]
- Massalski, T.B. Binary Alloy Phase Diagrams. ASM Metals Park: Ohio, OH, USA, 1986; Volume 1, 2. [Google Scholar]
- Iida, T.; Guthrie, R.I.L. The Physical Properties of Liquid Metals; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Moskovskikh, D.; Vorotilo, S.; Buinevich, V.; Sedegov, A.; Kuskov, K.; Khort, A.; Shuck, C.; Zhukovskyi, M.; Mukasyan, A. Extremely hard and tough high entropy nitride ceramics. Sci. Rep. 2020, 10, 19874. [Google Scholar] [CrossRef] [PubMed]
- Mitra, R. Mechanical behavior and oxidation resistance of structural silicides. Int. Mater. Rev. 2006, 52, 13–64. [Google Scholar] [CrossRef]
- Giuranno, D.; Sobczak, N.; Bruzda, G.; Nowak, R.; Polkowski, W.; Kudyba, A.; Polkowska, A.; Novakovic, R. Studying the wettability and reactivity of liquid Si-Ti eutectic alloy on glassy carbon. J. Mater. Eng. Perform. 2019, 28, 3460–3467. [Google Scholar] [CrossRef]
- Giuranno, D.; Sobczak, N.; Bruzda, G.; Nowak, R.; Polkowski, W.; Kudyba, A.; Polkowska, A.; Novakovic, R. Wetting and spreading behaviors of liquid Si-Ti eutectic alloy in contact with glassy carbon and SiC at T = 1450 °C. Metall. Mat. Trans. A 2019, 50, 4814–4826. [Google Scholar] [CrossRef]
- Liggieri, L.; Passerone, A. An automatic technique for measuring the surface tension of liquid metals. High. Technol. 1989, 7, 80–86. [Google Scholar] [CrossRef]
- Sobczak, N.; Nowak, R.; Radziwill, W.; Budzioch, J.; Glenz, A. Experimental complex for investigations of high temperature capillarity phenomena. Mat. Sci. Eng. A 2008, 495, 43–49. [Google Scholar] [CrossRef]
- Ricci, E.; Giuranno, D.; Nowak, R. Further development of testing procedures for high temperature surface tension measurements. J. Mater. Eng. Perform. 2013, 22, 3381–3388. [Google Scholar] [CrossRef] [Green Version]
- Knacke, O.; Kubashewski, O.; Hesselmann, K. Thermochemical Properties of Inorganic Substances, 2nd ed.; Springer: Düsseldorf, Germany, 1991. [Google Scholar]
- Eustathopoulos, N.; Sobczak, N.; Passerone, A.; Nogi, K. Measurement of contact angle and work of adhesion at high temperature. J. Mat. Sci. 2005, 40, 2271–2280. [Google Scholar] [CrossRef]
- Drevet, B.; Eustathopoulos, N. Wetting of ceramics by molten silicon and silicon alloys: A review. J. Mat. Sci. 2012, 47, 8247–8260. [Google Scholar] [CrossRef]
- Caccia, M.; Amore, S.; Giuranno, D.; Novakovic, R.; Ricci, E.; Narciso, J. Towards optimization of SiC/CoSi2 composite material manufacture via reactive infiltration: Wetting study of Si–Co alloys on carbon materials. J. Eur. Ceram. Soc. 2015, 35, 4099–4106. [Google Scholar] [CrossRef]
- Giuranno, D.; Polkowska, A.; Polkowski, W.; Novakovic, R. Wetting behavior and reactivity of liquid Si-10Zr alloy in contact with glassy carbon. J. Alloys Compd. 2020, 822, 153643. [Google Scholar] [CrossRef]
- Giuranno, D.; Bruzda, G.; Polkowska, A.; Nowak, R.; Polkowski, W.; Kudyba, A.; Sobczak, N.; Mocellin, F.; Novakovic, R. Design of refractory SiC/ZrSi2 composites: Wettability and spreading behavior of liquid Si-10Zr alloy in contact with SiC at high temperatures. J. Eur. Ceram. Soc. 2020, 40, 953–960. [Google Scholar] [CrossRef]
- Giuranno, D.; Polkowski, W.; Bruzda, G.; Kudyba, A.; Narciso, J. Interfacial Phenomena between Liquid Si-rich Si-Zr Alloys and Glassy Carbon. Materials 2020, 13, 1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eustathopoulos, N.; Nicholas, M.G.; Drevet, B. Wettability at High Temperatures. Pergamon Press: Oxford, UK, 1999; Volume 3. [Google Scholar]
- Andersson, J.O.; Helander, T.; Höglund, L.; Shi, P.F.; Sundman, B. Thermo-Calc and DICTRA, computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Du, Y.; Schuster, J.C.; Seifert, H.J.; Aldinger, F. Experimental investigation and thermodynamic calculation of the titanium–silicon–carbon system. J. Am. Ceram. Soc. 2000, 83, 197–203. [Google Scholar] [CrossRef]
- Voytovych, R.; Israel, R.; Calderon, N.; Hodaj, F.; Eustathopoulos, N. Reactivity between liquid Si or Si alloys and graphite. J. Eur. Ceram. Soc. 2012, 32, e3825–e3835. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuranno, D.; Gambaro, S.; Bruzda, G.; Nowak, R.; Polkowski, W.; Sobczak, N.; Delsante, S.; Novakovic, R. Interface Design in Lightweight SiC/TiSi2 Composites Fabricated by Reactive Infiltration Process: Interaction Phenomena between Liquid Si-Rich Si-Ti Alloys and Glassy Carbon. Materials 2021, 14, 3746. https://doi.org/10.3390/ma14133746
Giuranno D, Gambaro S, Bruzda G, Nowak R, Polkowski W, Sobczak N, Delsante S, Novakovic R. Interface Design in Lightweight SiC/TiSi2 Composites Fabricated by Reactive Infiltration Process: Interaction Phenomena between Liquid Si-Rich Si-Ti Alloys and Glassy Carbon. Materials. 2021; 14(13):3746. https://doi.org/10.3390/ma14133746
Chicago/Turabian StyleGiuranno, Donatella, Sofia Gambaro, Grzegorz Bruzda, Rafal Nowak, Wojciech Polkowski, Natalia Sobczak, Simona Delsante, and Rada Novakovic. 2021. "Interface Design in Lightweight SiC/TiSi2 Composites Fabricated by Reactive Infiltration Process: Interaction Phenomena between Liquid Si-Rich Si-Ti Alloys and Glassy Carbon" Materials 14, no. 13: 3746. https://doi.org/10.3390/ma14133746
APA StyleGiuranno, D., Gambaro, S., Bruzda, G., Nowak, R., Polkowski, W., Sobczak, N., Delsante, S., & Novakovic, R. (2021). Interface Design in Lightweight SiC/TiSi2 Composites Fabricated by Reactive Infiltration Process: Interaction Phenomena between Liquid Si-Rich Si-Ti Alloys and Glassy Carbon. Materials, 14(13), 3746. https://doi.org/10.3390/ma14133746