Chemical Vapor Deposition of N-Doped Graphene through Pre-Implantation of Nitrogen Ions for Long-Term Protection of Copper
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of N-Doped Graphene (NG) and Pristine Graphene (PG)
2.2. Oxidation Test of PG- and NG-Coated Cu System
2.3. Characterization of PG- and NG-Coated Cu
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitz, R.T.; Yacoby, A. Graphene rests easy. Nat. Nanotechnol. 2010, 5, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C.W.; Velamakanni, A.; Piner, R.D.; et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.S.; Arnold, M.S. Improving graphene diffusion barriers via stacking multiple layers and grain size engineering. Adv. Funct. Mater. 2013, 23, 3638–3644. [Google Scholar] [CrossRef]
- Topsakal, M.; Şahin, H.; Ciraci, S. Graphene coatings: An efficient protection from oxidation. Phys. Rev. B 2012, 85, 155445. [Google Scholar] [CrossRef] [Green Version]
- Yuan, A.; Guan, R.; Luo, B. Oxidative Originators of Graphene Barrier Coating Grown on Surfaces. Chemnanomat 2020, 6, 1285–1297. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Schriver, M.; Regan, W.; Gannett, W.J.; Zaniewski, A.M.; Crommie, M.F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Li, Z.; Shenoy, G.J.; Li, L.; Liu, H. Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene. ACS Nano 2013, 7, 6939–6947. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, R.; Zhai, H.; Liu, Y.; Gao, L.; Sun, J. A long-term oxidation barrier for copper nanowires: Graphene says yes. Phys. Chem. Chem. Phys. 2015, 17, 4231–4236. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J.C.; Jung, J.; MacDonald, A.H.; Vajtai, R.; Lou, J.; et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, S.H.; Yun, S.J.; Kim, Y.I.; Boandoh, S.; Park, J.-H.; Shin, B.G.; Ko, H.; Lee, S.H.; Kim, Y.-M.; et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 2018, 362, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Galbiati, M.; Stoot, A.C.; Mackenzie, D.M.A.; Bøggild, P.; Camilli, L. Real-time oxide evolution of copper protected by graphene and boron nitride barriers. Sci. Rep. 2017, 7, 39770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790–1798. [Google Scholar] [CrossRef]
- Li, D.; Duan, X.; Sun, H.; Kang, J.; Zhang, H.; Tade, M.O.; Wang, S. Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 2017, 115, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Cui, M.; Li, W.; Pu, J.; Xue, Q.; Wang, L. N-doping of graphene: Toward long-term corrosion protection of Cu. J. Mater. Chem. A 2018, 6, 24136–24148. [Google Scholar] [CrossRef]
- Jia, K.; Zhang, J.; Lin, L.; Li, Z.; Gao, J.; Sun, L.; Xue, R.; Li, J.; Kang, N.; Luo, Z.; et al. Copper-Containing Carbon Feedstock for Growing Superclean Graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674. [Google Scholar] [CrossRef] [PubMed]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’Homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Cançado, L.G.; Pimenta, M.A.; Neves, B.R.A.; Dantas, M.S.S.; Jorio, A. Influence of the Atomic Structure on the Raman Spectra of Graphite Edges. Phys. Rev. Lett. 2004, 93, 247401. [Google Scholar] [CrossRef]
- Thomsen, C.; Reich, S. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000, 85, 5214–5217. [Google Scholar] [CrossRef] [PubMed]
- Suenaga, K.; Yudasaka, M.; Colliex, C.; Iijima, S. Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem. Phy. Lett. 2000, 316, 365–372. [Google Scholar] [CrossRef]
- Jang, J.W.; Lee, C.E.; Lyu, S.C.; Lee, T.J.; Lee, C.J. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 2004, 84, 2877–2879. [Google Scholar] [CrossRef]
- Ronning, C.; Feldermann, H.; Merk, R.; Hofsäss, H.; Reinke, P.; Thiele, J.-U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B 1998, 58, 2207. [Google Scholar] [CrossRef]
- Marton, D.; Boyd, K.J.; Al-Bayati, A.H.; Todorov, S.S.; Rabalais, J.W. Carbon nitride deposited using energetic species: A two-phase system. Phys. Rev. Lett. 1994, 73, 118. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, M.W.; Kwon, H.C.; Park, S.H.; Woo, S.I. B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J. Mater. Chem. A 2013, 1, 3694–3699. [Google Scholar] [CrossRef]
- Kondo, T.; Casolo, S.; Suzuki, T.; Shikano, T.; Sakurai, M.; Harada, Y.; Saito, M.; Oshima, M.; Trioni, M.I.; Tantardini, G.F.; et al. Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Phy. Rev. B 2012, 86, 035436. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Qiu, H.J.; Fujita, T.; Tanabe, Y.; Tanigaki, K.; Chen, M. Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. Adv. Mater. 2014, 26, 4145–4150. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Davis, L.; Zeller, M.; Taylor, J.; Raymond, R.; Gale, L.H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225. [Google Scholar] [CrossRef]
- Ren, S.; Cui, M.; Li, Q.; Li, W.; Pu, J.; Xue, Q.; Wang, L. Barrier mechanism of nitrogen-doped graphene against atomic oxygen irradiation. Appl. Surf. Sci. 2019, 479, 669–678. [Google Scholar] [CrossRef]
- Luo, B.; Koleini, M.; Whelan, P.R.; Shivayogimath, A.; Brandbyge, M.; Bøggild, P.; Booth, T.J. Graphene-Subgrain-Defined Oxidation of Copper. ACS Appl. Mater. Inter. 2019, 11, 48518–48524. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Whelan, P.R.; Shivayogimath, A.; Mackenzie, D.M.A.; Bøggild, P.; Booth, T.J. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene. Chem. Mater. 2016, 28, 3789–3795. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Yang, S.; Yuan, A.; Zhang, B.; Li, D.; Bøggild, P.; Booth, T.J. Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure. Nanotechnology 2020, 31, 485603. [Google Scholar] [CrossRef]
Item | PG | NG1 | NG2 |
---|---|---|---|
N2 flow (sccm) | NA 1 | 25 | 25 |
Pressure (Pa) | NA | 5.1 × 10−2 | 5.1 × 10−2 |
Bias voltage (kV) | NA | −15.3 | −15.3 |
Radiofrequency power (W) | NA | 300 | 300 |
Duration (min) | NA | 5 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Dong, L.; Chen, H.; Yang, S.; Yuan, A.; Guan, R.; Yan, H.; Wu, J.; Zhang, B.; Li, D.; et al. Chemical Vapor Deposition of N-Doped Graphene through Pre-Implantation of Nitrogen Ions for Long-Term Protection of Copper. Materials 2021, 14, 3751. https://doi.org/10.3390/ma14133751
Han L, Dong L, Chen H, Yang S, Yuan A, Guan R, Yan H, Wu J, Zhang B, Li D, et al. Chemical Vapor Deposition of N-Doped Graphene through Pre-Implantation of Nitrogen Ions for Long-Term Protection of Copper. Materials. 2021; 14(13):3751. https://doi.org/10.3390/ma14133751
Chicago/Turabian StyleHan, Luoqiao, Lei Dong, Haiyan Chen, Shuai Yang, Aiheng Yuan, Ran Guan, Hong Yan, Jing Wu, Bo Zhang, Dejun Li, and et al. 2021. "Chemical Vapor Deposition of N-Doped Graphene through Pre-Implantation of Nitrogen Ions for Long-Term Protection of Copper" Materials 14, no. 13: 3751. https://doi.org/10.3390/ma14133751
APA StyleHan, L., Dong, L., Chen, H., Yang, S., Yuan, A., Guan, R., Yan, H., Wu, J., Zhang, B., Li, D., & Luo, B. (2021). Chemical Vapor Deposition of N-Doped Graphene through Pre-Implantation of Nitrogen Ions for Long-Term Protection of Copper. Materials, 14(13), 3751. https://doi.org/10.3390/ma14133751