Engineering Dielectric Materials for High-Performance Organic Light Emitting Transistors (OLETs)
Abstract
:1. Organic Light Emitting Transistor as a New Organic Light Emitting Platform
- (i)
- Transparent displays, which are of fundamental interest in application fields such as augmented reality and automotive, wearable goggles for biomedical use, etc.;
- (ii)
- High degree of integration with various optically active device to manipulate light in more complex architectures;
- (iii)
- Less stringent requirement at the backplane level, in fact being OLET a voltage-driven device, it does not require high-performance driving transistors such as those based on oxides or polycrystalline silicon (LTPS). Organic thin film transistors (OTFTs) fully satisfy requirements to pilot an OLET;
- (iv)
- Simplified pixel architecture, where the inherent capacitance of the organic light emitting transistor can be engineered to accomplish the pixel memory function;
- (v)
- Aperture ratio (defined as the ratio between the area of light emission and the total area of the pixel) of approximately ≈80% [10], readily fulfilling display requirements.
- (vi)
- Potentially pinhole- and shorts-free, given the device intrinsic architecture and the presence of dielectric layer, with the net result of improving yields in production line and reducing manufacturing cost.
2. Organic Light Emitting Transistors: Main Concept and Mechanism
2.1. Building Blocks
- (a)
- Three electrodes: source, drain and gate
- Gate electrode (G) can be either a metal or a transparent conductive oxide. Optical transparency in the visible range allows to extract the light also through the gate, enabling both top and bottom emission. Nowadays, the most used material as transparent conducting electrode is indium-tin-oxide (ITO). However, ITO is currently facing a number of challenges, mainly due to the dramatic price fluctuations as a result of the limited amount of available indium and to its intrinsic rigidity and brittleness upon bending [14]. This has encouraged a broad search for alternative transparent and conductive electrode materials, including metallic nanowires [15], carbon nanotubes [16,17], conductive polymers [18] and graphene films [19,20]. In recent years, conducting polymers have been also proposed as transparent films to be used in place of metals or oxides [21].
- Source (S) and drain (D) are often metallic films with appropriate work function to enable efficient charge injection into the organic layer. Large efforts have been devoted to the fabrication of transparent source and drain electrodes to directly collect all the light emitted in the device. Similar approaches as described for the gate electrode have been proposed, although attention should be paid to compatibility of materials and fabrication process, if the electrodes are on the top of the organic material. For configuration requiring bottom contacts (directly on substrates), conventional lithographic methods can be used to achieve µm-scale transistor channel lengths and high resolution.
- (b)
- Organic layer is the active part of the device, where charge transport and light emission occur. This can be either a single layer or a multilayer structure, or a single crystal (see later in the manuscript), where both charge transport and light emission can occur, depending on material properties.
- (c)
- Dielectric layer electrically isolates the gate from the source and drain electrodes needed for the field-effect to take place and to be able to induce polarization at the interface to enable transport in the organic active layer. Dielectric thickness smaller than the channel length (at least one order of magnitude) allows field-effect transport to occur.
2.2. Charge Transport Mechanism and Light Emission in OLET
- (a)
- Linear regime (VD << VG), where applying small source-drain biases induces a linear gradient of charge density between the injecting electrode (source) and the extracting electrode (drain). The current between source and drain is given by (Equation (1)):
- (b)
- Pinch-off, further increasing VD leads to the so-called pinch-off condition where VD = VG − Vth, corresponding to the formation of a depletion zone close to the drain electrode and a space-charged limited current can start to flow across this narrow region. The transistor switches from its OFF state to ON state.
- (c)
- Saturation regime, increasing VD even further leads to a spatial increase of the depletion area but not an increase in the drain-source constant, which remains constant and it is given by (Equation (3))
2.3. Operation Mode: Unipolar vs. Ambipolar
2.4. Device Configurations
- (a)
- Fabrication process possibly interfering and/or affecting the organic materials (e.g., electrodes fabrication, dielectric deposition from solution in top-gate configuration);
- (b)
- Organic materials molecular packing and consequently properties, such as mobility, strongly depends on underlying surface;
- (c)
- Materials interfaces are crucial for both charge transport, exciton formation and radiative decay.
2.5. Active Organic Layer
- (a)
- Single layer/single crystal.
- (b)
- Multi-layer structure.
- -
- Two organic semiconductors (one n- and one p-type) with the exciton forming and further decaying at the interface between the two, with charges brought in close proximity through field-effect;
- -
- One charge-transport layer and one light-emitting layer, where appropriate bias can be applied to populate the organic semiconductor at the interface with the dielectric layer with majority charges, which start to flow upon application of a drain-source bias. Thus, majority charges are injected into the organic emissive layer where they recombine radiatively with opposite minority charges injected from one of the electrodes leading to light generation. In this structure, the OLET transport is dominated by the nature of the charges present in the OSC.
2.6. Vertical-Organic Light Emitting Transistor (v-OLET)
3. Gate Dielectric for High-Performance Organic Light-Emitting Transistors
3.1. Interface between Dielectric and Organic Semiconductors
3.2. High-k Inorganic Dielectric Materials (Oxides, Nitrides, etc.)
3.3. High-k Polymer Dielectrics
- Process compatibility, since fabrication process might require high temperature (annealing) processes, which can affect substrate and the active organic layer (depending on configuration).
- -OH groups on the surface, which often require a passivation layer at the OSC-dielectric interface, thereby exhibiting inferior properties of mobility, stability and leakage current.
- (a)
- Process compatibility, where some fabrication methods might not be (fully) compatible with organic semiconductor and/or plastic-like substrates. Also, several solution-based fabrication methods, will still require additional surface modification to favour semiconductor growth. In addition, in top-gate configuration, all these processes need not to interfere with the already existing organic material;
- (b)
- Mechanical flexibility in the case of inorganic dielectrics, which poses limitation to their use in flexible electronics. On the other hand, using polymer dielectrics for example allows for fabrication of all-printed flexible organic devices. However, polymers are generally characterized by low dielectric constants, thus requiring large thicknesses as gate dielectrics to reduce leakage currents. Few high-k polymers are currently available, where the dielectric permittivity values result from high dipole polarizability, which should be taken into consideration in the case of organic light emitting devices;
- (c)
- Affinity with organic materials, where the interfaces are playing a fundamental role in the device operation. For example, passivation layers (e.g., SAMs) have been successfully shown to reduce interfacial traps at this interface and cross-linked polymer dielectrics allows for the deposition of the subsequent layers by solution-based methods, without dissolving the underlying gate dielectric layer.
4. Engineering Dielectric Layer for Light Manipulation in Organic Light Emitting Transistors
4.1. Quantum Dots Composites Dielectric
4.2. Photonic Crystals and Periodic Structures
4.3. Dielectric Metamaterials and Metasurfaces
5. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Horowitz, G. Organic Field-Effect Transistors. Adv. Mater. 1998, 10, 365–377. [Google Scholar] [CrossRef]
- Burroughes, J.H.; Bradley, D.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burn, P.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nat. Cell Biol. 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Brabec, C.J.; Sariciftci, N.S.; Hummelen, J.C. Plastic Solar Cells. Adv. Funct. Mater. 2001, 11, 15–26. [Google Scholar] [CrossRef]
- Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 2006, 5, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Muccini, M.; Koopman, W.; Toffanin, S. The photonic perspective of organic light-emitting transistors. Laser Photonics Rev. 2011, 6, 258–275. [Google Scholar] [CrossRef]
- Wakayama, Y.; Hayakawa, R.; Seo, H.-S. Recent progress in photoactive organic field-effect transistors. Sci. Technol. Adv. Mater. 2014, 15, 024202. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jiang, S.; Qian, J.; Song, L.; Zhang, L.; Zhang, Y.; Zhang, Y.; Wang, Y.; Wang, X.; Shi, Y.; et al. Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors. Sci. Rep. 2017, 7, 7830. [Google Scholar] [CrossRef]
- Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496–503. [Google Scholar] [CrossRef]
- Muccini, M.; Toffanin, S. Organic Light-Emitting Transistors: Towards the Next Generation Display Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Muhieddine, K.; Ullah, M.; Maasoumi, F.; Burn, P.L.; Namdas, E.B. Hybrid Area-Emitting Transistors: Solution Processable and with High Aperture Ratios. Adv. Mater. 2015, 27, 6677–6682. [Google Scholar] [CrossRef]
- Schulz, M. The end of the road for silicon? Nat. Cell Biol. 1999, 399, 729–730. [Google Scholar] [CrossRef]
- Maity, N.P.; Maity, R.; Baishya, S. (Eds.) High-k Gate Dielectric Materials: Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs); CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Ortiz, R.P.; Facchetti, A.; Marks, T.J. High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chem. Rev. 2010, 110, 205–239. [Google Scholar] [CrossRef]
- Indium Tin Oxide and Alternative Transparent Conductors Markets. Available online: www.nanomarkets.net (accessed on 15 May 2021).
- Lee, J.-Y.; Connor, S.T.; Cui, A.Y.; Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 2008, 8, 689–692. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent conductive carbon nanotube films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef]
- Ferrer-Anglada, N.; Pérez-Puigdemont, J.; Figueras, J.; Iqbal, M.Z.; Roth, S. Flexible, transparent electrodes using carbon nanotubes. Nanoscale Res. Lett. 2012, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Na, S.-I.; Kim, S.-S.; Jo, J.; Kim, D.-Y. Efficient and Fexible Organic Solar Cells Using Highly Conductive Polymer Anodes. Adv. Mater. 2008, 20, 4061–4067. [Google Scholar] [CrossRef]
- Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K. Graphene as Transparent Electrode Material for Organic Electronics. Adv. Mater. 2011, 23, 2779–2795. [Google Scholar] [CrossRef]
- Soldano, C.; Stefani, A.; Biondo, V.; Basiricò, L.; Turatti, G.; Generali, G.; Ortolani, L.; Morandi, V.; Veronese, G.P.; Rizzoli, R.; et al. ITO-Free organic light-emitting transistors with graphene gate electrode. ACS Photonics 2014, 1, 1082–1088. [Google Scholar] [CrossRef]
- Dauzon, E.; Mansour, A.E.; Niazi, M.R.K.; Munir, R.; Smilgies, D.-M.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A. Conducting and Stretchable PEDOT:PSS Electrodes: Role of Additives on Self-Assembly, Morphology, and Transport. ACS Appl. Mater. Interfaces 2019, 11, 17570–17582. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.U.; Muhieddine, K.; Wawrzinek, R.; Sobus, J.; Tandy, K.; Lo, S.; Namdas, E.B. Organic Light-Emitting Transistors: Advances and Perspectives. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Zaumseil, J.; Friend, R.H.; Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 2005, 5, 69–74. [Google Scholar] [CrossRef]
- Oyamada, T.; Sasabe, H.; Adachi, C.; Okuyama, S.; Shimoji, N.; Matsushige, K. Electroluminescence of 2,4-bis(4-(2′-thiophene-yl)phenyl)thiophene in organic light-emitting field-effect transistors. Appl. Phys. Lett. 2005, 86, 093505. [Google Scholar] [CrossRef] [Green Version]
- Sakanoue, T.; Fujiwara, E.; Yamada, R.; Tada, H. Preparation of Organic Light-emitting Field-effect Transistors with Asymmetric Electrodes. Chem. Lett. 2005, 34, 494–495. [Google Scholar] [CrossRef]
- Ullah, M.; Tandy, K.; Yambem, S.D.; Aljada, M.; Burn, P.L.; Meredith, P.; Namdas, E.B. Simultaneous Enhancement of Brightness, Efficiency, and Switching in RGB Organic Light Emitting Transistors. Adv. Mater. 2013, 25, 6213–6218. [Google Scholar] [CrossRef] [PubMed]
- Hepp, A.; Heil, H.; Weise, W.; Ahles, M.; Schmechel, R.; von Seggern, H. Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film. Phys. Rev. Lett. 2003, 91, 157406. [Google Scholar] [CrossRef]
- Santato, C.; Capelli, R.; Loi, M.A.; Murgia, M.; Cicoira, F.; Roy, V.; Stallinga, P.; Zamboni, R.; Rost, C.; Karg, S.; et al. Tetracene-based organic light-emitting transistors: Optoelectronic properties and electron injection mechanism. Synth. Met. 2004, 146, 329–334. [Google Scholar] [CrossRef]
- Zaumseil, J.; Donley, C.L.; Kim, J.-S.; Friend, R.H.; Sirringhaus, H. Efficient Top-Gate, Ambipolar, Light-Emitting Field-Effect Transistors Based on a Green-Light Emitting Polyfluorene. Adv. Mater. 2006, 18, 2708–2712. [Google Scholar] [CrossRef]
- Gwinner, M.C.; Kabra, D.; Roberts, M.; Brenner, T.J.K.; Wallikewitz, B.H.; McNeill, C.R.; Friend, R.H.; Sirringhaus, H. Highly Efficient Single-Layer Polymer Ambipolar Light-Emitting Field-Effect Transistors. Adv. Mater. 2012, 24, 2728–2734. [Google Scholar] [CrossRef] [PubMed]
- Rost, C.; Karg, S.; Riess, W.; Loi, M.A.; Murgia, M.; Muccini, M. Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 2004, 85, 1613–1615. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.U.; Panidi, J.; Nam, S.; Smith, A.; Lim, J.; Tetzner, K.; Patsalas, P.A.; Vourlias, G.; Sit, W.-Y.; Firdaus, M.; et al. Polymer Light-Emitting Transistors with Charge-Carrier Mobilities Exceeding 1 cm2 V−1s−1. Adv. Electron. Mater. 2020, 6, 1901132. [Google Scholar] [CrossRef]
- Takenobu, T.; Bisri, S.Z.; Takahashi, T.; Yahiro, M.; Adachi, C.; Iwasa, Y. High Current Density in Light-Emitting Transistors of Organic Single Crystals. Phys. Rev. Lett. 2008, 100, 066601. [Google Scholar] [CrossRef]
- Bisri, S.Z.; Takenobu, T.; Yomogida, Y.; Shimotani, H.; Yamao, T.; Hotta, S.; Iwasa, Y. High Mobility and Luminescent Efficiency in Organic Single-Crystal Light-Emitting Transistors. Adv. Funct. Mater. 2009, 19, 1728–1735. [Google Scholar] [CrossRef]
- Kanazawa, S.; Ichikawa, M.; Koyama, T.; Taniguchi, Y. Self-Waveguided Photoemission and Lasing of Organic Crystalline Wires Obtained by an Improved Expitaxial Growth Method. ChemPhysChem 2006, 7, 1881–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawabe, K.; Takenobu, T.; Bisri, S.Z.; Yamao, T.; Hotta, S.; Iwasa, Y. High current densities in a highly photoluminescent organic single-crystal light-emitting transistor. Appl. Phys. Lett. 2010, 97, 043307. [Google Scholar] [CrossRef] [Green Version]
- Yamao, T.; Shimizu, Y.; Terasaki, K.; Hotta, S. Organic Light-Emitting Field-Effect Transistors Operated by Alternating-Current Gate Voltages. Adv. Mater. 2008, 20, 4109–4112. [Google Scholar] [CrossRef]
- Kajiwara, K.; Terasaki, K.; Yamao, T.; Hotta, S. Light-Emitting Field-Effect Transistors Consisting of Bilayer-Crystal Organic Semiconductors. Adv. Funct. Mater. 2011, 21, 2854–2860. [Google Scholar] [CrossRef]
- Prosa, M.; Moschetto, S.; Benvenuti, E.; Zambianchi, M.; Muccini, M.; Melucci, M.; Toffanin, S. 2,3-Thienoimide-ended oligothiophenes as ambipolar semiconductors for multifunctional single-layer light-emitting transistors. J. Mater. Chem. C 2020, 8, 15048–15066. [Google Scholar] [CrossRef]
- Kim, J.; Khim, D.; Yeo, J.-S.; Kang, M.; Baeg, K.-J.; Kim, D.-Y. Polymeric P-N Heterointerface for Solution-Processed Integrated Organic Optoelectronic Systems. Adv. Opt. Mater. 2017, 5, 1700655. [Google Scholar] [CrossRef]
- Rost, C.; Gundlach, D.J.; Karg, S.; Rieß, W. Ambipolar organic field-effect transistor based on an organic heterostructure. J. Appl. Phys. 2004, 95, 5782–5787. [Google Scholar] [CrossRef]
- Namdas, E.B.; Ledochowitsch, P.; Yuen, J.D.; Moses, D.; Heeger, A.J. High performance light emitting transistors. Appl. Phys. Lett. 2008, 92, 183304. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.U.; Muhieddine, K.; Wawrzinek, R.; Li, J.; Lo, S.-C.; Namdas, E.B. Nano-Alignment in Semiconducting Polymer Films: A Path to Achieve High Current Density and Brightness in Organic Light Emitting Transistors. ACS Photonics 2018, 5, 2137–2144. [Google Scholar] [CrossRef]
- Zambianchi, M.; Benvenuti, E.; Bettini, C.; Zanardi, C.; Seeber, R.; Gentili, D.; Cavallini, M.; Muccini, M.; Biondo, V.; Soldano, C.; et al. Anthracene-based molecular emitters for non-doped deep-blue organic light emitting transistors. J. Mater. Chem. C 2016, 4, 9411–9417. [Google Scholar] [CrossRef]
- Toffanin, S.; Capelli, R.; Koopman, W.; Generali, G.; Cavallini, S.; Stefani, A.; Saguatti, D.; Ruani, G.; Muccini, M. Organic light-emitting transistors with voltage-tunable lit area and full channel illumination. Laser Photonics Rev. 2013, 7, 1011–1019. [Google Scholar] [CrossRef]
- Suganuma, N.; Shimoji, N.; Oku, Y.; Matsushige, K. Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin films. J. Mater. Res. 2007, 22, 2982–2986. [Google Scholar] [CrossRef]
- Walker, B.; Ullah, M.; Chae, G.J.; Burn, P.L.; Cho, S.; Kim, J.Y.; Namdas, E.B.; Seo, J.H. High mobility solution-processed hybrid light emitting transistors. Appl. Phys. Lett. 2014, 105, 183302. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, Y.S.; Ok, K.-C.; Park, Y.C.; Kim, H.Y.; Park, J.-S.; Kim, H.-S. A study on the electron transport properties of ZnON semiconductors with respect to the relative anion content. Sci. Rep. 2016, 6, 24787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.J.; Song, A.; Walker, B.; Seo, J.H.; Chung, K.-B. Hybrid ZnON-Organic Light Emitting Transistors with Low Threshold Voltage <5 V. Adv. Opt. Sci. 2019, 7, 1801290. [Google Scholar] [CrossRef]
- Chaudhry, M.U.; Tetzner, K.; Lin, Y.-H.; Nam, S.; Pearson, C.; Groves, C.; Petty, M.C.; Anthopoulos, T.D.; Bradley, D.C. Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors. ACS Appl. Mater. Interfaces 2018, 10, 18445–18449. [Google Scholar] [CrossRef]
- Muhieddine, K.; Ullah, M.; Pal, B.N.; Burn, P.; Namdas, E.B. All Solution-Processed, Hybrid Light Emitting Field-Effect Transistors. Adv. Mater. 2014, 26, 6410–6415. [Google Scholar] [CrossRef]
- Nakanotani, H.; Yahiro, M.; Adachi, C.; Yano, K. Ambipolar field-effect transistor based on organic-inorganic hybrid structure. Appl. Phys. Lett. 2007, 90, 262104. [Google Scholar] [CrossRef]
- Yamada, K.; Yamao, T.; Hotta, S. Light-emitting field-effect transistors having combined organic semiconductor and metal oxide layers. Adv. Mater. 2013, 25, 2860–2866. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Lin, Y.-H.; Muhieddine, K.; Lo, S.-C.; Anthopoulos, T.D.; Namdas, E.B. Hybrid Light-Emitting Transistors Based on Low-Temperature Solution-Processed Metal Oxides and a Charge-Injecting Interlayer. Adv. Opt. Mater. 2015, 4, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, H.; Nielsen, C.B.; Schroeder, B.C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. [Google Scholar] [CrossRef]
- Quinn, J.T.E.; Zhu, J.; Li, X.; Wang, J.; Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 2017, 5, 8654–8681. [Google Scholar] [CrossRef]
- Okamoto, T.; Kumagai, S.; Fukuzaki, E.; Ishii, H.; Watanabe, G.; Niitsu, N.; Annaka, T.; Yamagishi, M.; Tani, Y.; Sugiura, H.; et al. Robust, high-performance n-type organic semiconductors. Sci. Adv. 2020, 6, eaaz0632. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Luo, T.; Yuan, L.; Liang, W.; Xu, H. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors. Prog. Chem. 2017, 29, 1316–1330. [Google Scholar]
- Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M.R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 2018, 3, 18020. [Google Scholar] [CrossRef]
- Facchetti, A.; Yoon, M.; Marks, T.J. Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Adv. Mater. 2005, 17, 1705–1725. [Google Scholar] [CrossRef]
- Fahlman, M.; Fabiano, S.; Gueskine, V.; Simon, D.; Berggren, M.; Crispin, X. Interfaces in organic electronics. Nat. Rev. Mater. 2019, 4, 627–650. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Wang, W. High-κ dielectric and metal gate. In CMOS Past, Present and Future; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–103. [Google Scholar]
- Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A. High-k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chem. Rev. 2018, 118, 5690–5754. [Google Scholar] [CrossRef] [PubMed]
- Hulea, I.N.; Fratini, S.; Xie, H.; Mulder, C.L.; Iossad, N.N.; Rastelli, G.; Ciuchi, S.; Morpurgo, A.F. Tunable Fröhlich polarons in organic single-crystal transistors. Nat. Mater. 2006, 5, 982–986. [Google Scholar] [CrossRef]
- Veres, J.; Ogier, S.D.; Leeming, S.W.; Cupertino, D.C.; Khaffaf, S.M. Low-k Insulators as the Choice of Dielectrics in Organic Field-Effect Transistors. Adv. Funct. Mater. 2003, 13, 199–204. [Google Scholar] [CrossRef]
- Park, Y.D.; Lim, J.A.; Lee, H.S.; Cho, K. Interface engineering in organic transistors. Mater. Today 2007, 10, 46–54. [Google Scholar] [CrossRef]
- Di, C.-A.; Liu, Y.; Yu, G.; Zhu, D. Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Acc. Chem. Res. 2009, 42, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.; McGehee, M.D.; Toney, M.F. Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 2006, 5, 222–228. [Google Scholar] [CrossRef]
- Fritz, S.E.; Kelley, T.W.; Frisbie, C.D. Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer. J. Phys. Chem. B 2005, 109, 10574–10577. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Chattopadhyay, B.; Geerts, Y.H.; Resel, R. Substrate-Induced and Thin-Film Phases: Polymorphism of Organic Materials on Surfaces. Adv. Funct. Mater. 2016, 26, 2233–2255. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Colella, N.S.; Cherniawski, B.P.; Mannsfeld, S.C.B.; Briseno, A.L. Oligothiophene Semiconductors: Synthesis, Characterization, and Applications for Organic Devices. ACS Appl. Mater. Interfaces 2014, 6, 5327–5343. [Google Scholar] [CrossRef]
- Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71. [Google Scholar] [CrossRef]
- Li, M.; An, C.; Marszalek, T.; Baumgarten, M.; Müllen, K.; Pisula, W. Impact of Interfacial Microstructure on Charge Carrier Transport in Solution-Processed Conjugated Polymer Field-Effect Transistors. Adv. Mater. 2016, 28, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.R.; Youn, J.; Emery, J.D.; KewalRamani, S.; Hennek, J.W.; Bedzyk, M.J.; Facchetti, A.; Marks, T.J.; Geiger, F.M. In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities. J. Am. Chem. Soc. 2012, 134, 11726–11733. [Google Scholar] [CrossRef]
- Lee, B.H.; Hsu, B.B.Y.; Patel, S.N.; Labram, J.; Luo, C.; Bazan, G.C.; Heeger, A.J. Flexible Organic Transistors with Controlled Nanomorphology. Nano Lett. 2015, 16, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-R.; Phan, H.; Luo, C.; Wang, M.; Perez, L.A.; Patel, S.N.; Ying, L.; Kramer, E.J.; Nguyen, T.-Q.; Bazan, G.C.; et al. High-Mobility Field-Effect Transistors Fabricated with Macroscopic Aligned Semiconducting Polymers. Adv. Mater. 2014, 26, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.-J.; Facchetti, A.; Noh, Y.-Y. Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. J. Mater. Chem. 2012, 22, 21138. [Google Scholar] [CrossRef]
- Lee, W.H.; Choi, H.H.; Kim, D.H.; Cho, K. 25th Anniversary Article: Microstructure Dependent Bias Stability of Organic Transistors. Adv. Mater. 2014, 26, 1660–1680. [Google Scholar] [CrossRef] [PubMed]
- Gholamrezaie, F.; Andringa, A.-M.; Roelofs, W.S.C.; Neuhold, A.; Kemerink, M.; Blom, P.W.M.; De Leeuw, D.M. Charge Trapping by Self-Assembled Monolayers as the Origin of the Threshold Voltage Shift in Organic Field-Effect Transistors. Small 2011, 8, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathijssen, S.G.J.; Spijkman, M.-J.; Andringa, A.-M.; Van Hal, P.A.; McCulloch, I.; Kemerink, M.; Janssen, R.A.J.; De Leeuw, D.M. Revealing Buried Interfaces to Understand the Origins of Threshold Voltage Shifts in Organic Field-Effect Transistors. Adv. Mater. 2010, 22, 5105–5109. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Kymissis, I.; Bulovic, V.; Akinwande, A. Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans. Electron Devices 2005, 53, 9–13. [Google Scholar] [CrossRef]
- Kim, C.; Wang, Z.; Choi, H.-J.; Ha, Y.-G.; Facchetti, A.; Marks, T.J. Printable Cross-Linked Polymer Blend Dielectrics. Design Strategies, Synthesis, Microstructures, and Electrical Properties, with Organic Field-Effect Transistors as Testbeds. J. Am. Chem. Soc. 2008, 130, 6867–6878. [Google Scholar] [CrossRef]
- Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nat. Cell Biol. 2005, 434, 194–199. [Google Scholar] [CrossRef]
- Lee, C.A.; Park, D.W.; Jin, S.H.; Park, I.H.; Lee, J.D.; Park, B.-G. Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly(vinyl alcohol) gate insulator. Appl. Phys. Lett. 2006, 88, 252102. [Google Scholar] [CrossRef]
- Sinno, H.; Fabiano, S.; Crispin, X.; Berggren, M.; Engquist, I. Bias stress effect in polyelectrolyte-gated organic field-effect transistors. Appl. Phys. Lett. 2013, 102, 113306. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, H.G.O.; Bäcklund, T.G.; Österbacka, R.; Stubb, H. High-Performance All-Polymer Transistor Utilizing a Hygroscopic Insulator. Adv. Mater. 2004, 16, 1112–1115. [Google Scholar] [CrossRef]
- Kalb, W.L.; Mathis, T.; Haas, S.; Stassen, A.F.; Batlogg, B. Organic small molecule field-effect transistors with Cytop™ gate dielectric: Eliminating gate bias stress effects. Appl. Phys. Lett. 2007, 90, 092104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Guo, X.; Hui, J.; Hu, S.; Xu, W.; Zhu, D. Interface Engineering of Semiconductor/Dielectric Heterojunctions toward Functional Organic Thin-Film Transistors. Nano Lett. 2011, 11, 4939–4946. [Google Scholar] [CrossRef]
- Taur, Y. CMOS design near the scaling limit. IBM J. Res. Dev. 2002, 46, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Acton, O.; Hutchins, D.O.; Cernetic, N.; Jen, A.K.-Y. Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. Phys. Chem. Chem. Phys. 2012, 14, 14110–14126. [Google Scholar] [CrossRef]
- Acton, O.; Ting, G.G.; Shamberger, P.J.; Ohuchi, F.S.; Ma, H.; Jen, A.K.-Y. Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide. ACS Appl. Mater. Interfaces 2010, 2, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.G.; Emery, J.D.; Bedzyk, M.J.; Usta, H.; Facchetti, A.; Marks, T.J. Solution-deposited organic-inorganic hybrid multilayer gate dielectrics. Design, synthesis, microstructures, and electrical properties with thin-film transistors. J. Am. Chem. Soc. 2011, 133, 10239–10250. [Google Scholar] [CrossRef]
- Niinistö, L.; Nieminen, M.; Päiväsaari, J.; Niinistö, J.; Putkonen, M.; Nieminen, M. Advanced electronic and optoelectronic materials by atomic layer deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide material. Phys. Status Solidi A 2004, 201, 1443–1452. [Google Scholar] [CrossRef]
- Gröner, M.D.; Fabreguette, F.H.; Elam, J.W.; Georg, S.M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 2004, 16, 639–645. [Google Scholar] [CrossRef]
- Soldano, C.; Generali, G.; Cianci, E.; Tallarida, G.; Fanciulli, M.; Muccini, M. Engineering organic/inorganic alumina-based films as dielectrics for red organic light emitting transistors. Thin Solid Films 2016, 616, 408–414. [Google Scholar] [CrossRef]
- Bachelet, A.; Chabot, M.; Ablat, A.; Takimiya, K.; Hirsch, L.; Abbas, M. Low voltage operating organic light emitting transistors with efficient charge blocking layer. Org. Electron. 2021, 88, 106024. [Google Scholar] [CrossRef]
- Kim, D.-K.; Choi, J.-H. Low-voltage organic light-emitting field-effect transistors using n-Dodecylphosphonic acid-passivated HfOx dielectrics. Org. Electron. 2017, 51, 287–294. [Google Scholar] [CrossRef]
- Kim, D.-K.; Lee, M.; Kim, B.; Choi, J.-H. Low-voltage, high-performance polymeric field-effect transistors based on self-assembled monolayer-passivated HfOx dielectrics: Correlation between trap density, carrier mobility, and operation voltage. Org. Electron. 2019, 74, 135–143. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Guo, E.; Darbandy, G.; Wang, S.-J.; Hübner, R.; Kloes, A.; Kleemann, H.; Leo, K. Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nat. Mater. 2021, 20, 1007–1014. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Liu, B.; Donoghue, E.P.; Kravchenko, I.; Kim, D.Y.; So, F.; Rinzler, A.G. Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science 2011, 332, 570–573. [Google Scholar] [CrossRef]
- Zaumseil, J.; Kline, R.; Sirringhaus, H. Electroluminescence imaging and microstructure of organic light-emitting field-effect transistors. Appl. Phys. Lett. 2008, 92, 073304. [Google Scholar] [CrossRef]
- Naber, R.C.G.; Bird, M.; Sirringhaus, H. A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors. Appl. Phys. Lett. 2008, 93, 23301. [Google Scholar] [CrossRef]
- Soldano, C.; D’Alpaos, R.; Generali, G. Highly Efficient Red Organic Light-Emitting Transistors (OLETs) on High-k Dielectric. ACS Photonics 2017, 4, 800–805. [Google Scholar] [CrossRef]
- Nam, S.; Chaudhry, M.U.; Tetzner, K.; Pearson, C.; Groves, C.; Petty, M.C.; Anthopoulos, T.D.; Bradley, D.D.C. Efficient and Stable Solution-Processed Organic Light-Emitting Transistors Using a High-k Dielectric. ACS Photonics 2019, 6, 3159–3165. [Google Scholar] [CrossRef]
- Chen, H.; Xing, X.; Miao, J.; Zhao, C.; Zhu, M.; Bai, J.; He, Y.; Meng, H. Highly Efficient Flexible Organic Light Emitting Transistor Based on High-k Polymer Gate Dielectric. Adv. Opt. Mater. 2020, 8, 1901651. [Google Scholar] [CrossRef]
- Yumusak, C.; Sariciftci, N.S. Organic electrochemical light emitting field effect transistors. Appl. Phys. Lett. 2010, 97, 033302. [Google Scholar] [CrossRef]
- Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 2015, 6, 8476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodabalapur, A.; Rothberg, L.J.; Jordan, R.H.; Miller, T.M.; Slusher, R.E.; Phillips, J.M. Physics and applications of organic microcavity light emitting diodes. J. Appl. Phys. 1996, 80, 6954–6964. [Google Scholar] [CrossRef]
- Han, J.-H.; Moon, J.; Cho, D.-H.; Shin, J.-W.; Chu, H.Y.; Lee, J.-I.; Cho, N.S.; Lee, J. Luminescence enhancement of OLED lighting panels using a microlens array film. J. Inf. Disp. 2018, 19, 179–184. [Google Scholar] [CrossRef]
- Shim, Y.S.; Hwang, J.H.; Park, C.H.; Jung, S.-G.; Park, Y.W.; Ju, B.-K. An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes. Nanoscale 2016, 8, 4113–4120. [Google Scholar] [CrossRef]
- Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238. [Google Scholar] [CrossRef]
- Samuel, I.; Turnbull, G. Organic Semiconductor Lasers. Chem. Rev. 2007, 107, 1272–1295. [Google Scholar] [CrossRef]
- Grinolds, D.D.W.; Brown, P.R.; Harris, D.K.; Bulovic, V.; Bawendi, M.G. Quantum-Dot Size and Thin-Film Dielectric Constant: Precision Measurement and Disparity with Simple Models. Nano Lett. 2015, 15, 21–26. [Google Scholar] [CrossRef]
- Lesyuk, R.; Cai, B.; Reuter, U.; Gaponik, N.; Popovych, D.; Lesnyak, V. Quantum-Dot-in-Polymer Composites via Advanced Surface Engineering. Small Methods 2017, 1, 1700189. [Google Scholar] [CrossRef]
- Boonsin, R.; Barros, A.; Donat, F.; Boyer, D.; Chadeyron, G.; Schneider, R.; Boutinaud, P.; Mahiou, R. Optical properties and reliability studies of gradient alloyed green emitting (CdSe)x(ZnS)1–x and red emitting (CuInS2)x(ZnS)1–x quantum dots for white light-emitting diodes. ACS Photonics 2018, 5, 462–470. [Google Scholar] [CrossRef]
- Lee, J.; Sundar, V.C.; Heine, J.R.; Bawendi, M.G.; Jensen, K.F. Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites. Adv. Mater. 2000, 12, 1102–1105. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, L.; Meng, Z.; Xu, C.; Lin, N.; Liu, X.-Y. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology 2018, 29, 315203. [Google Scholar] [CrossRef] [PubMed]
- Notomi, M. Manipulating Light by Photonic Crystals. NTT Tech. Rev. 2009, 7, 1. [Google Scholar]
- Joannopoulos, J.D.; Meade, R.D.; Winn, J.N. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Notomi, M. Theory of Light Propagation in Strongly Modulated Photonic Crystals: Refraction-like Behavior in the Vicinity of the Photonic Band Gap. Phys. Rev. B 2000, 62, 10696–10705. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- Notomi, M.; Yamada, K.; Shinya, A.; Takahashi, J.; Yokohama, I. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Phys. Rev. Lett. 2001, 87, 253902. [Google Scholar] [CrossRef] [Green Version]
- Gwinner, M.C.; Khodabakhsh, S.; Song, M.H.; Schweizer, H.; Giessen, H.; Sirringhaus, H. Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor. Adv. Funct. Mater. 2009, 19, 1360–1370. [Google Scholar] [CrossRef]
- Namdas, E.B.; Hsu, B.B.Y.; Yuen, J.D.; Samuel, I.D.W.; Heeger, A.J. Optoelectronic Gate Dielectrics for High Brightness and High-Efficiency Light-Emitting Transistors. Adv. Mater. 2011, 20, 2353–2356. [Google Scholar] [CrossRef]
- Natali, M.; Quiroga, S.D.; Passoni, L.; Criante, L.; Benvenuti, E.; Bolognini, G.; Favaretto, L.; Melucci, M.; Muccini, M.; Scotognella, F.; et al. Simultaneous Tenfold Brightness Enhancement and Emitted-Light Spectral Tunability in Transparent Ambipolar Organic Light-Emitting Transistor by Integration of High-k Photonic Crystal. Adv. Funct. Mater. 2017, 27, 1605164. [Google Scholar] [CrossRef]
- Daskalakis, K.S.; Freire-Fernández, F.; Moilanen, A.J.; van Dijken, S.; Törmä, P. Converting an Organic Light-Emitting Diode from Blue to White with Bragg Modes. ACS Photonics 2019, 6, 2655–2662. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Buckley, S.; Jones, A.M.; Ross, J.S.; Ghimire, N.J.; Yan, J.; Mandrus, D.G.; Yao, W.; Hatami, F.; Vučković, J.; et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 2014, 1, 011001. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.B.Y.; Duan, C.; Namdas, E.B.; Gutacker, A.; Yuen, J.D.; Huang, F.; Cao, Y.; Bazan, G.C.; Samuel, I.; Heeger, A.J. Control of Efficiency, Brightness, and Recombination Zone in Light-Emitting Field Effect Transistors. Adv. Mater. 2012, 24, 1171–1175. [Google Scholar] [CrossRef]
- Magliulo, M.; Manoli, K.; Macchia, E.; Palazzo, G.; Torsi, L. Tailoring Functional Interlayers in Organic Field-Effect Transistor Biosensors. Adv. Mater. 2014, 27, 7528–7551. [Google Scholar] [CrossRef]
- Shigee, Y.; Yanagi, H.; Terasaki, K.; Yamao, T.; Hotta, S. Organic Light-Emitting Field-Effect Transistor with Channel Waveguide Structure. Jpn. J. Appl. Phys. 2010, 49, 01AB09. [Google Scholar] [CrossRef]
- Lutsyk, P.; Janus, K.; Sworakowski, J.; Generali, G.; Capelli, R.; Muccini, M. Photoswitching of an n-Type Organic Field Effect Transistor by a Reversible Photochromic Reaction in the Dielectric Film. J. Phys. Chem. C 2011, 115, 3106–3114. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Chu, C.H.; Tsai, D.P. Fundamentals and applications of metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef] [Green Version]
- Rifat, A.A.; Rahmani, M.; Xu, L.; Miroshnichenko, A.E. Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor. Materials 2018, 11, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D.N.; Brener, I.; Pertsch, T.; Kivshar, Y.S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 2015, 3, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Ollanik, A.J.; Smith, J.A.; BeLue, M.J.; Escarra, M.D. High-Efficiency All-Dielectric Huygens Metasurfaces from the Ultraviolet to the Infrared. ACS Photonics 2018, 5, 1351–1358. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Su, R.; Yao, B.; Fang, H.; Li, K.; Zhou, L.; Liu, J.; Stellinga, D.; Reardon, C.P.; et al. Efficient Silicon Metasurfaces for Visible Light. ACS Photonics 2017, 4, 544–551. [Google Scholar] [CrossRef]
- Forouzmand, A.; Mosallaei, H. All-Dielectric C-Shaped Nanoantennas for Light Manipulation: Tailoring Both Magnetic and Electric Resonances to the Desire. Adv. Opt. Mater. 2017, 5, 1700147. [Google Scholar] [CrossRef]
- Sainidou, R.; Renger, J.; Teperik, T.V.; González, M.U.; Quidant, R.; De Abajo, F.J.G. Extraordinary All-Dielectric Light Enhancement over Large Volumes. Nano Lett. 2010, 10, 4450–4455. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Medina, R.; Laroche, M.; Saenz, J.J. Extraordinary optical reflection from sub-wavelength cylinder arrays. Opt. Express 2006, 14, 3730–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Kwon, H.; Finch, S.; Lee, J.Y.; Nordin, L.; Wasserman, D.; Alù, A.; Dodabalapur, A. Reflecting metagrating-enhanced thin-film organic light emitting devices. Appl. Phys. Lett. 2021, 118, 053302. [Google Scholar] [CrossRef]
- Joo, W.-J.; Kyoung, J.; Esfandyarpour, M.; Lee, S.-H.; Koo, H.; Song, S.; Kwon, Y.-N.; Song, S.H.; Bae, J.C.; Jo, A.; et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 2020, 370, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Ke, T.-H.; Genoe, J.; Heremans, P.; Rolin, C. Overlapping-Gate Organic Light-Emitting Transistors. Adv. Electron. Mater. 2018, 5, 1800437. [Google Scholar] [CrossRef]
- Hsieh, H.-H.; Chen, W.-C.; Generali, G.; Soldano, C.; D’Alpaos, R.; Turatti, G.; Biondo, V.; Muccini, M.; Huitema, E.; Facchetti, A. 54-3: Invited Paper: Flexible Active-Matrix OLET Display on a Plastic Substrate. In SID Symposium Digest of Technical Papers; Society for Information Display: Campbell, CA, USA, 2016; Volume 47, pp. 739–742. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Liu, B.; Cheney, D.J.; Lemaitre, M.G.; Jayaraman, R.; Mativenga, M.; Geng, D.; Kim, J.; Kim, H.M.; Jang, J.; et al. P-206L: Late-News Poster: QVGA AMOLED Displays Using the Carbon Nanotube Enabled Vertical Organic Light Emitting Transistor. In SID Symposium Digest of Technical Papers; Society for Information Display: Campbell, CA, USA, 2016; Volume 47, pp. 1796–1798. [Google Scholar] [CrossRef]
Organic Light Emitting Transistor (OLET) | Organic Light Emitting Diode (OLED) | |
---|---|---|
Device architecture | transistor characteristics | diode characteristics |
Charge transport | horizontal µm-scale transport (field-effect) | vertical nanoscale transport (tunneling between layers) |
Device structure | electrodes: 3 (source, drain, gate) no transparent electrode (light in channel) | electrodes: 2 (anode, cathode) at least one transparent electrode to extract light |
active layer: single or multilayer structure capable of conducting (field-effect) holes and electrons and emitting light | active layer: vertical stack including charge-transport, charge-injection and emissive layers | |
dielectric layer: to isolate gate and electrodes and enable field-effect; it prevents shorts | no dielectric layer | |
Light emission | light occurs in the channel; emission area and brightness can be spatially tuned through bias | light is extracted through one (or two) transparent electrode(s); brightness level can be tuned through diode current |
Electrical | field-effect mobility(µe, µh) | mobility of charges (electrons, holes) upon field-effect (can be calculated from Equation (4)) |
threshold voltage (Vth,e, Vth,h) | voltage corresponding to channel conduction onset (can be calculated from Equation (4)) | |
ON/OFF ratio | high values ensure transistor switching behavior/conductance modulation | |
Optical | Electroluminescence (EL) | device light output upon bias (vs. Photoluminescence, PL: light output upon optical excitation) |
External Quantum Efficiency (EQE) | γ: number of excitons formed/number of charges in the device ηS/T: spin multiplicity of recombining exciton (singlet/triplet) φPL: luminescence quantum yield of the exciton formation layer ηout: light outcoupling efficiency of the device | |
Luminance | luminous light intensity projected on a given area and direction | |
Brightness | perception of luminance following interaction with human cornea |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldano, C. Engineering Dielectric Materials for High-Performance Organic Light Emitting Transistors (OLETs). Materials 2021, 14, 3756. https://doi.org/10.3390/ma14133756
Soldano C. Engineering Dielectric Materials for High-Performance Organic Light Emitting Transistors (OLETs). Materials. 2021; 14(13):3756. https://doi.org/10.3390/ma14133756
Chicago/Turabian StyleSoldano, Caterina. 2021. "Engineering Dielectric Materials for High-Performance Organic Light Emitting Transistors (OLETs)" Materials 14, no. 13: 3756. https://doi.org/10.3390/ma14133756
APA StyleSoldano, C. (2021). Engineering Dielectric Materials for High-Performance Organic Light Emitting Transistors (OLETs). Materials, 14(13), 3756. https://doi.org/10.3390/ma14133756