Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction
Abstract
:1. Introduction
2. Design and Fabrication of AMS
2.1. Design
2.2. Fabrication
3. Results
3.1. Design Map of the Unit Cell of the AMS
3.2. The Sound Pressure Level in the Tire Cavity Model (Static Test)
3.3. The Sound Pressure Level in the Cabin (Dynamic Test)
4. Further Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Münzel, T.; Sørensen, M.; Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 2021, 1–18. [Google Scholar] [CrossRef]
- Fritschi, L.; Brown, A.L.; Kim, R.; Schwela, D.; Kephalopoulos, S. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- The European Parliment and the Council of the European Union. Regulation (EU) No 540/2014 of the European Parliament and of the Council of 16 April 2014—On the Sound Level of Motor Vehicles and of Replacement Silencing Systems, and Amending Directive 2007/46/EC and Repealing Directive 70/157/EEC. 2014. Available online: https://eur-lex.europa.eu/eli/reg/2014/540/oj (accessed on 15 July 2021).
- Braun, M.E.; Walsh, S.J.; Horner, J.L.; Chuter, R. Noise source characteristics in the ISO 362 vehicle pass-by noise test: Literature review. Appl. Acoust. 2013, 74, 1241–1265. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Feng, J.; Burdisso, R.; Sandu, C. Effects of speed on tire–pavement interaction noise (Tread-pattern–related noise and non–tread-pattern–related noise). Tire Sci. Technol. 2018, 46, 54–77. [Google Scholar] [CrossRef]
- Domenichini, L.; Fracassa, A.; La Torre, F.; Loprencipe, G.; Ranzo, A.; Scalamandrè, A. Relationship between road surface characteristics and noise emission. In Proceedings of the First International Colloquium on Vehicle Tyre Road Interaction, Rome, Italy, 28 May 1999; p. 99. [Google Scholar]
- O’Boy, D.J.; Walsh, S.J. Automotive tyre cavity noise modelling and reduction. In Proceedings of the INTER-NOISE 2016-45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, Hamburg, Germany, 21 August 2016. [Google Scholar]
- Wang, X.; Mohamed, Z.; Ren, H.; Liang, X.; Shu, H. A study of tyre, cavity and rim coupling resonance induced noise. Int. J. Veh. Noise Vib. 2014, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Tenzuka, T. Tire Tread for Reducing Noise. U.S. Patent No. 15/539,638, 4 January 2018. [Google Scholar]
- Choi, S.-J.; Kim, H.-J. Polyurethane Foam and Pneumatic Tire. U.S. Patent No. 9,315,611, 19 April 2016. [Google Scholar]
- Kamiyama, Y.; Ishii, K. Vehicle Wheel having Sound-Damping Structures. U.S. Patent No. 10,131,190, 20 November 2018. [Google Scholar]
- Sakakibara, K. Pneumatic Tire. U.S. Patent No. 10,000,096, 19 June 2018. [Google Scholar]
- Errico, F.; Petrone, G.; Rosa, S.D.; Franco, F.; Ichchou, M. On the concept of embedded resonators for passive vibration control of tyres. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021. [Google Scholar] [CrossRef]
- Cusimano, F.J. Low Noise Pneumatic Tire Tread with Voids Balanced over Each Half Tread Region. U.S. Patent No. 5,209,793, 11 May 1993. [Google Scholar]
- Lee, S.K.; Lee, H.; Back, J.; An, K.; Yoon, Y.; Yum, K.; kim, S.; Hwang, S.U. Prediction of tire pattern noise in early design stage based on convolutional neural network. Appl. Acoust. 2021, 172, 107617. [Google Scholar] [CrossRef]
- Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.-C.; Jing, Y. Acoustic metasurfaces. Nat. Rev. Mater. 2018, 3, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, X.; Liang, B.; Cheng, J.; Zhang, L. Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 2015, 4, 024003. [Google Scholar] [CrossRef]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 2014, 13, 873–878. [Google Scholar] [CrossRef]
- Sui, N.; Yan, X.; Huang, T.-Y.; Xu, J.; Yuan, F.-G.; Jing, Y. A lightweight yet sound-proof honeycomb acoustic metamaterial. Appl. Phys. Lett. 2015, 106, 171905. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, W.; Chen, H.; Konneker, A.; Popa, B.-I.; Cummer, S.A. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 2014, 5, 5553. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sala, R.; Sancho, J.; Sánchez, J.V.; Gómez, V.; Llinares, J.; Meseguer, F. Sound attenuation by sculpture. Nature 1995, 378, 241. [Google Scholar] [CrossRef]
- Deymier, P.A. Acoustic Metamaterials and Phononic Crystals; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Heo, H.; Walker, E.; Zubov, Y.; Shymkiv, D.; Wages, D.; Krokhin, A.; Choi, T.-Y.; Neogi, A. Non-reciprocal acoustics in a viscous environment. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20200657. [Google Scholar] [CrossRef]
- Nassar, H.; Yousefzadeh, B.; Fleury, R.; Ruzzene, M.; Alù, A.; Daraio, C.; Norris, A.N.; Huang, G.; Haberman, M.R. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 2020, 5, 667–685. [Google Scholar] [CrossRef]
- Sung, G.; Kim, J.S.; Kim, J.H. Sound absorption behavior of flexible polyurethane foams including high molecular-weight copolymer polyol. Polym. Adv. Technol. 2018, 29, 852–859. [Google Scholar] [CrossRef]
- Chang, J.; WanYing, W.; XiaoXiong, J. Study on tire noise transfer path identification. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 2629–2632. [Google Scholar]
- Yi, J.; Liu, X.; Shan, Y.; Dong, H. Characteristics of sound pressure in the tire cavity arising from acoustic cavity resonance excited by road roughness. Appl. Acoust. 2019, 146. [Google Scholar] [CrossRef]
- Choi, W.H.; Bolton, J.S. Investigation of the split in the fundamental air-cavity mode of loaded tires. In Proceedings of the 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020, Seoul, Korea, 12 October 2020. [Google Scholar]
- Timoshenko, S. Vibration Problems in Engineering, 2nd ed.; D. Van Nostrand Company, Inc.: New York, NY, USA, 1937. [Google Scholar]
- Rayleigh, J.W.S.B. The Theory of Sound; Macmillan & Co.: London, UK, 1877. [Google Scholar]
- Liew, K.M.; Lam, K.Y. A set of orthogonal plate functions for flexural vibration of regular polygonal plates. J. Vib. Acoust. 1991, 113, 182–186. [Google Scholar] [CrossRef]
- Liu, Z.; Fard, M.; Davy, J.L. Prediction of the acoustic effect of an interior trim porous material inside a rigid-walled car air cavity model. Appl. Acoust. 2020, 165. [Google Scholar] [CrossRef]
- Kindt, P.; Sas, P.; Desmet, W. Measurement and analysis of rolling tire vibrations. Opt. Lasers Eng. 2009, 47. [Google Scholar] [CrossRef]
- Jiang, P.; Hu, J. Research on new materials in civil and construction engineering. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Wuhan, China, 2019; Volume 484. [Google Scholar]
- Hyuk Park, J.; Suh Minn, K.; Rae Lee, H.; Hyun Yang, S.; Bin Yu, C.; Yeol Pak, S.; Sung Oh, C.; Seok Song, Y.; June Kang, Y.; Ryoun Youn, J. Cell openness manipulation of low density polyurethane foam for efficient sound absorption. J. Sound Vib. 2017, 406. [Google Scholar] [CrossRef]
- Li, T.T.; Chuang, Y.C.; Huang, C.H.; Lou, C.W.; Lin, J.H. Applying vermiculite and perlite fillers to sound-absorbing/thermal-insulating resilient PU foam composites. Fibers Polym. 2015, 16. [Google Scholar] [CrossRef]
- D’Amore, G.K.O.; Caniato, M.; Travan, A.; Turco, G.; Marsich, L.; Ferluga, A.; Schmid, C. Innovative thermal and acoustic insulation foam from recycled waste glass powder. J. Clean. Prod. 2017, 165. [Google Scholar] [CrossRef]
- Mohamed, Z.; Wang, X. A study of tyre cavity resonance and noise reduction using inner trim. Mech. Syst. Signal Process. 2015, 50–51, 498–509. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, H.; Sofield, M.; Ju, J.; Neogi, A. Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction. Materials 2021, 14, 4262. https://doi.org/10.3390/ma14154262
Heo H, Sofield M, Ju J, Neogi A. Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction. Materials. 2021; 14(15):4262. https://doi.org/10.3390/ma14154262
Chicago/Turabian StyleHeo, Hyeonu, Mathew Sofield, Jaehyung Ju, and Arup Neogi. 2021. "Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction" Materials 14, no. 15: 4262. https://doi.org/10.3390/ma14154262
APA StyleHeo, H., Sofield, M., Ju, J., & Neogi, A. (2021). Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction. Materials, 14(15), 4262. https://doi.org/10.3390/ma14154262